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Efficient Calculation of Correlation Functions for a Fokker-Planck System*
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A method is described for the efficient calculation of temporal correlations in systems
whose equation of motion is a Fokker-Planck equation. The speed and accuracy of this
approach is illustrated by a calculation of the intensity fluctuation and amplitude-phase
correlation functions for a single-mode laser near threshold.

Interest in cooperative phenomena in systems
far from thermal equilibrium has risen remark-
ably in recent years. Fokker-Planck equations
have been an essential theoretical tool in analyz-
ing these phenomena. ' For Fokker-Planck sys-
tems the methods of calculating the dynamic prop-
erties —usually correlation functions —fall into
two catagories: (1) a linearization of the equation
of motion about equilibrium; and (2) a complete
Green's-function solution to the equation of mo-
tion. Linearization is simple and fast when appli-
cable. If one cannot linearize, or one needs a
more accurate evaluation, the Green's-function
approach provides, in principle, the desired solu-
tion. Unfortunately, in practice, the Green's-
function method (requiring the solution of partial
differential equations) is intractable unless the
problem possesses symmetries which reduce the
number of degrees of freedom. Even in problems
with only one degree of freedom (requiring solu-
tions to only ordinary differential equations) a
sizable amount of numerical analysis must be
performed to obtain the correlation functions.
The method described here requires more effort
than a linearization but considerably less than a
Green's function analysis. It renders possible
the investigation of a much larger class of Fok-

ker-Planck systems than was heretofore feasible.
We first describe the method and then apply it to
a problem for which a detailed Green's-function
analysis is already available for comparison.
These calculations for a single-mode laser near
threshold illustrate the speed and accuracy of
this approach. A more extensive analysis of this
example as well as the application of the techni-
que to other systems will be presented elsewhere.

It is useful to note that this method yields a se-
quence of alternating upper and lower bounds to
the exact correlation function and that these
bounds systematically improve in accuracy to
give a solution of any desired degree of precision.

The physical systems considered here are de-
scribed in terms of a probability density P(x;) in
the phase space of the macroscopic physical
parameters x;. Such a statistical system is
termed a Fokker-Planck system if the temporal
evolution of its probability density is given by a
random diffusion of the ensemble's phase points
superimposed on a systematic fluidlike flow of
the phase points through the phase space. In par-
ticular, we restrict our attention to systems
which obey detailed balance (that is, the equili-
brium probability of a phase point going from re-
gion A in phase space to region B in a time inter-
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val is equal to the probability of a transition from
region B to A in the same time interval) and
whose drift vectors are irreversible under time
reversal (that is the ith component of the veloc-
ity of the fluidlike flow is odd or even under time
reversal according to whether the coordinate x;
itself is odd or even). These are physically rea-
sonable conditions that are satisfied by many sys-
tems both in equilibrium statistical mechanics
(for example, Brownian motion and noise in elec-
trical circuits) and nonequilibrium statistical
mechanics (for example, threshold behavior of
laser and parametric oscillators and the convec-
tive instability of fluids). '

Consider systems described by a Fokker-Planck
equation,

9P 9 8p = — &;p+ Ds.p
~t ~x; ~x;Bx-

which obeys detailed balance and whose drift vec-
tors are irreversible under time reversal. ' The
static equilibrium properties of such a system
are readily calculated from the equilibrium den-
sity Po(x). The dynamic properties can be ex-
pressed most conveniently in terms of the Hermi-
tian differential operator H =Po ' LPo' . In par-
ticular the autocorrelation function of some quan-
tity f[x(t)] can be written as

(f[x(t)]f[x(0)])

where H acts to the right and the doubJi. e angular
brackets denote integration over the whole phase
space. The usual Green's-function approach is
to expand H in terms of' its eigenvalues and eigen-
functions, and evaluate Eq. (2) as an infinite sum.

In this note two facts are exploited to calculate
the correlation function. First, its initial deriva-
tives, '

p, „=((Po'"(x)f [x] ( II)"f[x]Po-'"(x))), are
readily evaluated. Second, since the eigenvalues
of H are real and non-negative, these initial de-
rivatives form a Stieljes sequence. ' The corre-
lation function can then be approximated as a fi-
nite sum, '

s„(t)=pa„e- "',

whose parameters, a„and ~„, are determined by
equating the approximation's initial derivatives
to those calculated for the correlation function.
[Given an even number 2Ã of initial derivatives,

one determines N a„'s and N ~„'s, while for an
odd number 2N —1 of initial derivatives, A =0,
and one determines N a„'s and N —1 X„'s.] More-
over, as more initial derivatives are used, the
approximations form a monotonic decreasing se-
quence of upper bounds (for an odd number of
initial derivatives) and a monotonic increasing
sequence of lower bounds (for an even number of
initial derivatives}. ' Let us emphasize again that
these approximants are xiguvous bounds to the ex-
act correlation function.

There are a variety of ways to calculate the
a„'s and A, 's. ' A particularly simple one stems
from the fact that the approximation (3) satisfies
an Ãth order differential equation with constant
coefficients,

This equation and its first N —1 derivatives eval-
uated at t = 0 provide a set of linear equations (in-
volving p, o through p,~,) the the constants c .
S„(t) is then just the solution to this equation
with the given initial conditions. '

To evaluate the efficacy of this approach, con-
sider the fluctuations in a tuned single-mode la-
ser near threshold. The description of this sys-
tern in terms of a Fokker-Planck equation is
mell established. Moreover, since an extensive
Green's-function analysis has been performed
for this system, ' detailed results are available
for comparison. The equation of motion for the
probabilitv density Pg, u*) of the slowly varying
complex electric field amplitude u(t) =. I (t)'"e~t'~
ls

,[(p -I).*P] .. .4P

where t, u, and I =uu* are scaled as usual andp
is the pump parameter, which is positive above
and negative below threshold.

The two quantities of physical interest are as
follows:

(1) The amplitude-phase correlation function
(u*(t)u(0)), whose correlation time T„=Jo"(u~(t}
&&+(0))dt j(I) gives the inverse linewidth of the
laser light. Since T„ is proportional to the laser
intensity well above and below threshold, the
linewidth factor u(p) = (I)/T„(which varies from
2 below to 1 above threshold) is customarily used
to display the threshold behavior of T„. This cor-
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FIG. 3. Intensity-fluctuation correlation time {high-

est curve) and its first two even approximants which
are increasingly more stringent lower bounds. The
higher even approximants are indistinguishable from
the exact result. The odd approximants give the trivial
upper bound infinity.

FIG. 1. Amplitude-phase correlation- function for p
=2 (up er solid curve, top and right scale's), intensity
fluctuation correlation function for p =4 (lower soir

. curve, bottom and left scales) and their approximants
(dashed lines where distinct from solid lines) which
r ' reasingly more precise upper (odd approximants)

and lower (even approximants) bounds. Higher-order
approximants are indistinguishable from the exact re-
sults ~

relation function for p = 2 and the linewidth factor
as a function of p are displayed in Figs. l and 2

AMPLITUDE —PHASE FLUCTUATIONS
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along with their approximants.
(2) The intensity fluctuation correlation func-

tion (&I (t) & I(0)) [where &I (t) = I (t) —(I)], whose
correlation time Tz= fo (b I (t)& I (0))dt/(6 Is) is
readily measured in photon-counting experiments.
This correlation function for p = 4 and the corre-
lation time as a function of p are displayed in
Figs. I and 3 along with their approximants.

The first approximants in Figs. 2 and 3 reflect
the initial slope of the corresponding correlation
function. This is a reasonable approximation to
the final result for the intensity fluctuations, ' but
evidently, a rather poor one in the amplitude-
phase case.

The figures adequately summarize the accuracy
of this technique. In addition, it is to be empha-
sized that the above results cost, in computer
and human effort, less than 1% of the correspond-
ing calculations with the Green's-function method.

I I

0
PUMP PARAMETER

FIG. 2. I,inewidth factor (lowest curve) and its first
three even approximants which are increasingly more
stringent upper bounds. The higher even approximants
are indistinguishable from the exact result. The odd
approximants give the trivial lower bound zero.
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'See, for example, B.Graham, in Spyinge~ Tracts in
Modem Physics, Ewgebnisse der exakten Natu~is-
senschaften, edited by G. Hohler (Springer, Berlin,
1973), Vol, 66; also articles in Synexgeties, edited by
H. Haken (Teubner, Stuttgart, 1973).
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%e derive a modified Korteweg-de Vries equation appropriate to small-amplitude,
spherically symmetric waves. A numerical solution is obtained which differs qualitative-
ly from the one-dimensional soliton solution.

Soliton solutions' in one dimension are now
well known for acoustic waves propagating in a
collisionless plasma of warm electrons and cold
ions. 2 Experimental observation of this phenome-
non is well founded. ' The two-component (elec-
trons and ions) fluid equations, together with
Poisson's equation, reduce to the Korteweg-de
Vries equation' in the small-amplitude approxi-
mation. The solution is a symmetric pulse mov-
ing with constant velocity, for which the squa, re
root of the peak amplitude multiplied by the width
takes on a characteristic value.

In this Letter, we report results recently ob-
tained by working with the three-dimensional,
spherically symmetric version of this problem.
We follow the procedure used in Ref. 2. The sys-
tem of equations describing the motion is

t, = —ve (l /A. n+~;t),
'g =C (d;t, (6)

where c is the expansion parameter, AD the De-
bye length, and w; the ion plasma frequency. We
transform Eqs. (1)-(4) from the coordinates (l', t)
to the ((,q). Then we expand in powers of e:

llo +

fluid velocity, r the radial distance, and t the
time. A stationary, isothermal electron Quid
has been assumed.

We investigate ingoing solutions of Eqs. (1)-(4)
in the small-amplitude approximation. The dis-
persion relation for acoustic waves in the linear
approximation for long wavelengths leads us to
define new dimensionless coordinates

&n/& ~ = —(e/kT)in,

sv/et+ v8 v/er = (ze/M)z,

~ '(8/er)(HZ) = 4~e(ZX- r),
ex/8 t+ ~-'(() /8 ~)(Hxv) = 0.

(2)

N is the ion density, Ze the ion charge, I the ion
mass, n the electron density, T the electron tem-
pelatule, E 'the e'lectr1c fleM (radial), V tile loll

W = (1/Z)(n, +X'),

("+ ' ("+...
N' = eN~" + e'N"'+

V = eV~') +e'V ' +

(12)


