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lows: h*(x)=7,(x) £ifi;(x), and 2,® (x) —~ (F i) *le* i a5
X o0,
. 5See Calogero (Ref. 4), p. 200, where it is denoted by
Dzz(k").

fWe feel that this property is largely responsible for
the quality of the approximation, indicating how delicate
it might be to consistently invoke further corrections.
In this context we note that the derivative of #;(7) found
here is discontinuous at 7;. This discontinuity may be
overcome by a more careful manipulation, with the re-
sult that only terms of order V/E <1 are modified.

"The appropriate exact phase shifts were calculated
in two independent ways by Dr. Y. Tikochinsky. We are

grateful to him for his assistance.

8Actually this “Born” expression for 6; is a good ap-
proximation for I < L, where phase shifts are far from
being small. To demonstrate this just replace l#;1* in
the second term of Eq. (5) by 27,;%, thus neglecting #;
—j,2 because of its oscillatory, averaging to zero, be-
havior.

Note that for > L the relevant range is @ and that
ka is only 1.3, not much greater than 1, for £ =100
MeV. It is remarkable that arguments based on oscilla-
tion still hold for such a case.

This point is discussed clearly by L. L. Foldy and
J. D. Walecka, Ann. Phys. (New York) 54, 447 (1969).
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In a quite general Feynman-diagram model, diffractively produced inelastic states at
high energies lead to a decrease in the total cross section below and above the threshold
for the process. Nondiffractive channels produce the opposite effect. Asymptotically
this agrees with the eikonal approach and the Gribov Reggeon calculus. Thus one can
understand the broad dip in the pp total cross section at intermediate energies and, if the
triple Pomeron decouples, the resultant intersecting-storage-rings rise.

The observed rise in the proton-proton total
cross section at the CERN intersecting storage
rings (ISR)! has generated considerable specula-
tion on the possible existence of a new and unex-
pectedly large energy scale in strong interac-
tions. On the theoretical side, the Mueller-Regge
approach has led to simple and physical relations
between production processes and elastic scat-
tering.? The resulting analysis of diffractive
fragmentation processes has led to the identifica-
tion of positive contributions to the total cross
section which increase with energy® and which
may be of the same size as the observed rise.
However, it has recently been pointed out that
in the eikonal approach, the term which is linear
in the triple-Pomeron coupling is negative defi-
nite for asymptotic energies.* This is in agree-
ment with Gribov’s Reggeon calculus.® It is our
purpose here to give a simple nonasymptotic
analysis, valid around threshold, of this result
and the physics involved.

In those papers which try to relate the increase
in the pp total cross section to the sharp rise in
the inclusive proton cross section near x =1,
where x is the Feynman scaling variable, it is
commonly assumed (and quite naturally) that an
increase in the diffractive excitation cross sec-
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tion normally produces a rise in the total cross
section and that the other contributions remain
more or less the same.® In this paper, this
threshold effect is re-examined and it is shown
that despite expectations to the contrary, the ef-
fect on this total cross section of a rapidly rising
inelastic cross section depends critically on
whether the final state is diffractively produced
or not. If the production mechanism is predomi-
nantly real, such as the case of real particle ex-
change, then the total cross section rises; how-
ever, if the production mechanism is diffractive,
then the total cross section decreases with the
onset of the inelastic process. The point is that
in this case a rise in the fragmentation cross sec-
tion normally produces twice as much fall in the
cross section for events with no rapidity gap.
This reversal will certainly have an effect on the
decoupling theorems’ as was briefly discussed in
Ref. 4.

In order to illustrate this rather unexpected be-
havior which is nevertheless true in potential
scattering,® let us examine a very simple two-
channel model of the scattering matrix which is
dominated by absorption. Unitarity of the S ma-
trix will be guaranteed by writing it in matrix
form in impact-parameter space. An angular
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momentum expansion yields the same result.
Consider the following S matrix:

S=exp[-A(b) +io,a(b)],

where o, is the symmetric and real off-diagonal
Pauli matrix and A(b) is positive. The energy
dependence is suppressed. In this model, the
transition (or production) scattering amplitude
between the up and down states is real if a(b) is
real. The total, elastic, and production cross
sections are given, respectively, by

Oror=2Jd% [1 - e Acosal,
oo =Jd? |1 —e “cosal?,
Osner=Jd? |e 4 sina .

Therefore, the absorption function A(b) deter-
mines the absorption cross section and satisfies
the equation

o'tot(s) = fdzb [1 - e_zA]"’Gel(s) + O‘inel(s)-

However, if the transition scattering amplitude
is diffractive (purely imaginary), then setting a
=ilal in the S matrix leads to the relation

ror(s) = Jd2b[1 = e724] 4 00y(S) = Tpen(s),

where A must satisfy the relation A = |al for con-
sistency with unitarity. Furthermore, if both A
and ¢ are small or are treated perturbatively,
then to second order in these quantities, one
finds the relation

O'tot(s) =2)d’h A - oel(s) - 0'inel(s) tee.

The minus sign in front of the elastic cross sec-
tion term is a reflection of the familiar phenom-
enon that leads to the celebrated minus sign for
the net two-Pomeron cut. The diffractively pro-
duced inelastic cross section has the same sign
—it could hardly be different.

Let us turn now to a proof of our result in a
Feynman-diagram model in which the absorptive
channels are explicitly treated. The classes of
diagrams will be chosen so as to be consistent
with the usual S-matrix philosophy with cluster
decomposition as expressed, for example, by
Abarbanel.®

We will consider scattering amplitudes which
are built up of ladder graphs, window graphs,
and fragmentation graphs. It is necessary to di-
vide the asymptotic and intermediate states into
channels which will be labeled by the number of
rapidity gaps present in them. Only zero- and
one-gap states will be considered but higher num-
bers can be trivially included. Their correspond-

ing Green’s functions will be denoted by G, and
G,; the elastic two-body state will be dealt with
explicitly and its propagator is G,. The G’s are
collections of Feynman propagators in the direc-
tion of s. The real (or in general Hermitian)
transition kernels are introduced as K,,, K,,,
and K,,, and they contain no intermediate states
of the G,, G,, or G, type.

At this point, it is simplest to proceed directly
to the equations for the scattering amplitudes
that fully define the class of diagrams considered.
They are

Tee=KooGoT oo+ K o1 GiT e
T0e=K08(1 + GeTee) +K01G1T13,
T1e=K (1 +G.T o) +K1,GoT e

It is also convenient to introduce the positive def-
inite operator

2,2(T,.*-T,,)/ 2,

whose matrix element in the forward direction is
proportional to the total cross section.

For example, the lowest order contribution to
the transition amplitude T, is K,,, which could
be dominated by and certainly contains the sim-
ple multiperipheral production graph. The elas-
tic scattering amplitude T,, then contains the
term K ,,G,K,, which is immediately recognized
as the ladder graphs, where G, contains all the
propagators of the rungs. This model does not
contain all graphs; in particular, the nonplanar
graphs are not treated completely. Some non-
planar graphs can be included by appropriate
choices for the kernels K, but others are not
since when the discontinuity of the amplitude is
taken, some multidimensional cuts are not in-
cluded. However, since our final result agrees
with the eikonal for asymptotic energies, and
nonplanar graphs are required in the eikonal ap-
proach, our theorem would seem to have nonzero
content. In the case of the exchange of two Pom-
erons, nonplanar graphs allow a cut through both
Pomerons simultaneously which is a positive defi-
nite term. It is compensated by the fact that
there are then also twice as many single-cut
terms. For a clear and detailed analysis of
these intermediate states, see the work of Bot-
ke '

Since the major interest here is to explore the
consequences of diffraction, it will be assumed
that G, is dominated by its imaginary part. We
will set G,=-id,, where d,>0 contains the mass-
shell 6 functions of the particles in the rungs of
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the ladder. It is also true that at high energies,
the elastic Green’s function G, is dominated by
its imaginary part so that G,=-1d,. It is not
necessary to make this approximation in all cas-
es but it simplifies the discussion.

Now let us compare two different physical cas-
es, namely, the effect on the total cross section
of diffractive and nondiffractive production of
one-gap or fragmentation states.

(a) Nondiffractive case.—For this case, it will
be assumed that K, =0=K,, and then to lowest or-
der, T,,=K,,, which is real. The formal solu-
tion for T, is

T,.=[1-wG,]'w,
where

W =K ,GoK oo+ K )G, K .
For later use, we define

-ImW=A,+A,,

where A, , are positive definite and correspond
to the above two terms. The total cross section
operator is

T p=[1=w*G *] (WHd , W - ImW)[1 - G,W] ™.

Let us now explore the effects of the one-gap in-
termediate states in the situation when G, =~ id,,
G,=—-1id,, and G, =-ixd,, where x is a parameter
that allows the one-gap states to be turned off.

One finds
Zpldy, dgyxd =1 +(Ag +xA,)d, ] (A, +xA)).

The effect of varying x from zero to one is deter-
mined by integrating

E 1- i -
ddx =[1+(Ao+xA1)deJ 1A1|_1 +de(A0+Al)] 130

which is a positive definite operator. Therefore,
under the stated assumptions, the total cross
section definitely increases as nondiffractively
produced one-gap states are introduced. This is
to be contrasted with the result in the next sec-
tion.

(b) Diffractive case.—For this case, it is con-
venient to set K,,=0=K_,, and then one finds

Tee =Keo[1 - GOU]-IGOKOe ’

T :Kvm[1 - GOU].‘IGOKOE s
where

U=KyeGeK oo + K1 G K e

It will now be assumed that G, and G, are purely
imaginary, but since threshold effects of the one-
gap states are of interest, the real part of G,
will not be neglected. Below threshold, G, is
real and negative definite. T, is seen to be ba-
sically diffractive under these assumptions.

It is convenient to symmetrize the operators
present in % ;, and after a slight rearrangement,
one finds

2 pldy, 2d ,, xdy, y ReG, 1=K od ) 2(1 + A) TV2(1 +y2L02) N1 +A4) "M% 2K,

where
L=(1+A)"%d,'”Ky ReG,K,,d,"/*(1 +A) /2
and

A(z,x) =do”2(2 Koed K oo + xKoldle)dollz'

It is now obvious that X, is a decreasing function of y and hence of terms proportional to ReG,. One
can then proceed to carry out the same argument with respect to x and then z. The result is that

Z:T[dm de’ dl’ ReGl] s ET[dm de7 0’ 0] < ZT[dw 0, 0; 0] ’

where
2.4, 0,0,0]=K dK,..

The above operator inequality, which is our
main result, must hold for any diagonal matrix
element and hence the total cross section must
be less than the value given by neglecting elastic
and one-gap intermediate states. This latter val-
ue is usually termed the “bare Pomeron.”

One readily sees that an ever increasing con-
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tribution from the one-gap states actually damps
the total cross section towards zero. Note also
that by virtue of the sign reversal, the real part
of the scattering amplitude coming from the frag-
mentation states becomes positive at sufficiently
large energies.!’ This is opposite to the expecta-
tion from dispersion relations and to the idea
that the fragmentation states lead to a rise in the
cross section as in case (a) discussed above.
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Since the real part is known to be negative at in-
termediate energies, it should stay negative be-
low and in the threshold region and then start to
increase and turn positive (if diffractive fragmen-
tation dominates) when the energy is far above
the effective fragmentation threshold.

It therefore seems clear that a rise in the total
cross section cannot come from the turning on of
a diffractively produced channel. In other words,
the triple-Pomeron region must contribute nega-
tively to the total cross section. If the (presum-
ably) diffractively produced states do indeed have
a rising cross section in pp scattering in the ISR
energy range, either the basic mechanism pro-
ducing the no-gap or pionization states must rise
by considerably more, or there are important
contributions from nondiffractive final states.
The mystery of the origin of any rise in the pp
total and elastic cross sections deepens, but
from another point of view, our results provide
a natural but perhaps not totally satisfactory ex-
planation of the broad dip'? in the pp cross sec-
tion which is starting to go away (as an inverse
power of Ins if the triple Pomeron decouples) in
the ISR energy range. ,
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