
VOLUME 31,NUMBER 1$ PHYSICAL REVIEW LETTERS 8 OCTOBER 1973

H. Feshbach, ibid. 48, 94 (1968).
~Y. E. Kim and A. Tubis, Phys. Rev. C 1, 414 (1970),

and 3, 975 (1971).
~ A separable P may easily be constructed for a

specified Igs) and Es.
'~We use the units and normalization conventions

of Refs. 1 and 3-5, i.e., 5 =~(nucleon mass) = 1,
&4 "14")= &v'» "Iv'»" &

= &h'I » = ~(h' —h) and &4s I is&
=1.
' M. Gell-Mann and M. L. Goldberger, Phys. Rev. 79,

469 (1950).
'3The inclusion of & in the completeness relations

is necessary because (r & R,I(s) = (r & R, Ig» ) = (r
& R, Iq»&0&) =0 and thus the bases Igni ~), Itis) and
Iy»& &), Igs) cannot be used to represent vectors Ip& for
which (z & R, Iy) ~ 0.

~4R. F. Bishop, Phys. Rev. C 7, 479 (1973).
~5N. Levinson, Kgl. Dan. Vidensk. Selsk. , Mat.-Fys.

Medd. 25, No. 9 (1949).
J. M. Jauch, Helv. Phys. Acta 30, 143 (1957).

lvY. E. Kim and A. Tubis, to be published.
~ Actually, it is only necessary for p to be asymptot-

ically local in our derivation of the OPE contribution
to o(p Ih&.

~~A, Martin, Nuovo Cimento 21, 157 (1961).
For the derivation of this type of relation from the

Schrodinger equation see, e.g., T. Fulton and P. Schwed,
Phys. Rev. 115, 973 (1959); H. P. Noyes, Phys. Rev.
Lett. 15, 538 (1965).

'This approach is similar in spirit to that of H. S.
Picker and J. P, Lavine, Phys. Rev. C 6, 1542 (1972),
Sect. V.

See, e.g. , E. P. Harper, Y. E. Kim, and A. Tubis,
Phys. Rev. C 6, 1601 (1972); P, U. Sauer and J.A.
Tjon, "Three-Nucleon Calculations Without the Ex-
plicit Use of Two-Body Potentials" to be published.

Radiation-Reaction and Vacuum-Field Effects in Heisenberg-Picture Quantum Electrodynamics

I. R. Senitzky
Physics Department, Technion Israel Inst—itute of Technology, Hara, Israel

(Received 25 June 1973)

It is shown that the radiation-reaction concept, which explains classical radiative ef-
fects, cannot be used exclusively to explain atomic radiative effects, and must be sup-
plemented by consideration of the vacuum field.

It has been suggested' that the Heisenberg pic-
ture might be useful in a search for the resolu-
tion of well-known conceptual difficulties of quan-
tum electrodynamics. Since these deal mainly
with radiative frequency shifts, it has also been
argued' that the radiation-reaction concept of
classical (nonrelativistic) theory, which explains
both the damping and frequency shift of classical
radiators, be used to explain atomic level shifts
and anomalous magnetic moments. The Heisen-
berg picture presents a suitable vehicle for in-
corporating this concept.

A Heisenberg-picture analysis~ —hereafter re-
ferred to as I—-of the interaction between a spe-
cial type of atomic system (which includes a two-
level system) and a generalized type of radiation
field (which includes the electromagnetic field)
has been performed, with decay rates and level
shifts calculated but not specialized to the elec-
tromagnetic field. More recently, a similar anal-
ysis was reported for the electromagnetic field
in particular, ' in which the authors conclude that
the radiation reaction does indeed explain the
radiative level shift, and that the vacuum part of
the field, used occasionally to explain spontane-

ous emission' and level shift, ' "plays essentially
no role in determining either the frequency shift
4 or the decay rate A. " It is the purpose of the
present paper to point out the following:

(I) The above conclusion is not justified when
applied to the calculation of the decay rate of a
two-level systein (TLS).

(2) Interpretation of the anomalous moment of
the electron as a radiative frequency shift for a
TLS in a nonrelativistic theory yields the wrong
sign; a renormalization procedure based on ex-
plicit consideration of the effect of the vacuum
field will rectify the sign.

(3) The vacuum field indeed plays no role when
the atomic system is a harmonic oscillator; thus,
antenna theory is conceptually correct not only
classically but also quantum mechanically.

%e utilize the notation and results of I. The
atomic system is described by the (dimension-
less) angular momentum variables l„ l„and l, .
The atomic Hamiltonian is Swl3, ~ being positive.
(For a TLS, set l = —,'. ) The hth field mode is de-
scribed by the Hamiltonian ku»(a» a»+ 2), and the
coupling Hamiltonian between 4th mode and atom
is 2 'I'h(a»+a»t)P;y, »l;. Using l, =2 'I'(l, ail, ),

955



VOLUME 3j., +UMBER 15 PHYSICAL REVIEW LETTERS 8 OCTOBER 1973

L = e~L —L3e+ L+6 —6 ~L„
L =L36 —S~L3+ 6~L„—L 6,

(2a)

(2b)

L3 = —(L,++ +tL )+8 tL,+ L 8 .

The expressions for A~ and A~~ are linear in L, ,
L~; integration, substitution into Eqs. (l), and
approximation based on the fact that the number
of modes is large and closely spaced in frequen-
cy leads to the results, '

(2c)

8 ~ 8O+ (n~ —in2)L

=S,—ia3L„C C, —ie4L„
where

n, = -'~lr (~)I'p(~),

n, = lp f."d~&
I r(~&)l'p(~&)(~» —&) ',

n. = 'f, d~&-lr(~, )l'p(~, )(~,+~) ',

(3)

p(&u~) being the density of modes at w„, and
ly(~, )l' being the average of l y, l' over all modes
with frequency near co~. An explicit expression
for n4 will not be needed. ~p Sp and 6, are ob-
tained from 8, S, and 6 by replacing A„(t) with

A„(0), and represent the free-field values of 8,
S, and 6. The second term in Eqs. (3) is the
source field; it is the part of the field generated
by the atomic system and reacts back on the sys-
tem [by substitution from Eqs. (3) into Eqs. (2)]
to produce the "radiation reaction. "

Note that each term in Eqs. (2) involves a prod-
uct of variables which commute. After substitu-
tion from Eqs. (3), however, the factors in the
individual products no longer commute. The or-
der of the factors in Eqs. (2), as written, is such
that the vacuum expectation values of all terms
containing the free-field variables vanish after
the substitution, the only terms left being the
expectation values of the atomic variables. It
thus appears as though the vacuum field has no

we introduce the "reduced variables" &„,&~, L, ,
Ls, defined by

a„=A-, exp( —i~, t), /, =—L,e" ', t, =L„
which are constant in the absence of coupling and
slowly varying in its presence. With

8 = 2i P»„*A„exp[—i(&u„—~)t],
S = ~ i Q y A exp[ —Z(u„+ e)t],
e = (i/W2)g, y»A„exp( —i&a„t),

where y~ = y~~+ iy», the equations of motion for
the atomic system become

An equally valid expression results from invert-
ing the order of the factors in the terms of Eqs.
(2), namely

L, = —(QOL, + L 8 ) —2n, L L,. (5)

We calculate, up to second order in perturbation
theory, the (spontaneous) emission rate when the
atomic system is in its highest-energy state and
the field is in its vacuum state. Since n, is a
second-order constant, we can replace L,(t) by
L,(0) in the last term of Eqs. (4) and (5). Equa-
tion (4) yields

(I.s) = —2n, (L,(0)L (0)) = —2niLO,

where L, =l, the total angular momentum quan-
tum number. Equation (5), on the other hand,
yields'

(L,) = —(8,L, +L Q,,t), (7

which, up to second order, becomes

(L,) = —L.f, «(&.(t) &. (t,)+&.(t, ) ~, (t)) (8).
An evaluation by the methods of I gives'

f '
dt, (8,(t, ) 8, (t)) = n, + in, . (9)

Substitution from Eq. (9) and its complex conju-
gate into Eq. (8) produces a result identical to
that of Eq. (6). However, while in Eqs. (4) and
(6) the spontaneous emission is displayed formal-
ly as a consequence of the source field only, in
Eqs. (5) and (8) the spontaneous emission is dis-
played formally as a result of the vacuum field

effect on the solution for the vacuum expectation
values of the atomic variables, and only the
source field (or the radiation reaction) is in-
volved. However, the order of the factors in
Eqs. (2) has been deliberately chosen to yield
normal ordering for the free-field variables.
This choice automatically determines the order
of the factors L, , L3 in the nonvanishing terms,
and affects their expectation values. If we choose
the opposite order for the factors in the terms
of Eqs. (2), substitution from Eqs. (3) will result
in antinormal ordering, the vacuum expectation
value of the terms containing the free-field vari-
ables will not vanish, and the terms containing
atomic variables only will not necessarily have
the same expectation values.

For purposes of calculating decay rate, or
spontaneous emission, we may neglect S and 6.'
Substitution from Eqs. (3) into (2c) then yields

L, = —(L,S,+d, tL ) —2n, L,L . (4)



VOLUME 31, NUMBER 15 PHYSICAL REVIEW LETTERS 8 OcrosER 1973

& = —2(n, —n, ) = —', p-f, "d~» lr(~»)l'p(~»)f(~, ~»),

where f(&u, e») =(ur» —&u)
' —(&u»+e) '. As in the case of the decay rate, this result can be obtained in

two ways. By normal ordering, which suppresses the formal effect of the vacuum field, we obtain4

(L,&
= —,'[n—,+ i(n, —n, )](L,),

(10)

where the expectation-value brackets refer only to the vacuum state of the field. However, by writing
Eqs. (2) in antinormal form, substituting from Eqs. (3) as well as from the integrals of Eqs. (2), and

ignoring higher-than-second-order effects, we have

only. One sees that the statements "spontaneous emission is produced by the vacuum field" and "spon-
taneous emission is produced by reaction of the source-field, "when referring to a TLS in its upper
state, are merely two sides of the same quantum-mechanical coin, with each statement by itself being
an oversimplification motivated by the ordering scheme adopted.

Consider now the frequency shift for a TLS. In the Heisenberg picture, a frequency shift is exhibit-
ed by a change in the frequency of oscillation of l,(t). We consider the freely decaying system and look
at the vacuum expectation value of L,(t). A factor exp(iAt) in the resulting expression yields a frequen-
cy ++4 for the radiating TLS. From I,

(L,&
= 2[n, +i(n2 —na)3(L, & -(L.)f '«, (~u(t, )~u'(t)+su(t)~u'(t, )& (12)

e2@ Q { 3

37T 7R C (d~ —Q)

(15)

where a cutoff ~ has been introduced. If ~ is
chosen to be of the order of magnitude of mc2/5,
as is customary in nonrelativistic theories, "we
can approximate the integrand by co~, obtaining

2e' eSII-'(n —n )-——
37T Sc 2'pic

Note that 2K&/Hu is a change in the effective mo-
ment. Since the anomalous moment is approxi-
mately (2n) '(e'/k c)(eh/2mc), "the above order-
of-magnitude calculation is surprisingly good as
far as the absolute value is concerned. However,
it yields the wrong sign. " The anomalous mo-
ment has the same sign as the "bare" moment,

Clearly, the first term comes from the source
field and the second term from the vacuum field.
Utilizing Eq. (9) and the similarly derived rela-
tionship

f «, (Su(t)$3 (t, )& = —in3, (13)

we reproduce the result of Eq. (11). The frequen-
cy shift obtained from Eq. (12) can be attributed
to the two fields, as follows:

[2(n2 n3)~source [n2 n3jvacuum.

An electron in a dc magnetic field I, may be
considered, if we ignore orbital motion, as a
two-level spin system with &u = (e/mc)H, . The
magnetic dipole coupling to the electromagnetic
radiation field is given by ly(&u»)t'=8we'h~/
3m'c'V, where V is the normalization volume. '
Since p(&u») = &~»'/w'c', one obtains

producing an increase in v, while b, of Eq. (10)
is negative. If the anomalous moment is to be
interpretable as a radiative frequency shift for
a TLS in nonrelativistic quantum electrodynam-
ics, the way out of this dilemma appears to be a
renormalization procedure which absorbs the vac-
uum-field contribution in Eq. (14). Then the phys-
ical anomalous moment is given by the source-
field contribution only in a calculation where the
vacuum-field effect must be explicitly subtracted.

How is the significance of the vacuum field to
be reconciled with classical electrodynamics, in
which radiative frequency shifts are due to the
source field only~ The answer goes beyond a
statement that quantum effects become negligibly
small in the classical domain. It is easily seen
that for harmonic (or linear) oscillators, the per-
tinent effects of the vacuum field vanish even in
the quantum-mechanical domain. If the harmonic
oscillator is described by the Hamiltonian Lu
&& (ata+ —,), with coupling to the kth mode given by
2h(a»+a» )y»(a+a ), then, instead of Eq. (2), we
obtain for the reduced variable A

A = —8+~, (17)
and, in place of Eqs. (3), we have

t2', =Su+ (n, —in2)A, S =Su —inaA . (18)
The linearity of Eq. (17) obviates questions of or-
dering, and, after substitution from Eqs. (18) in-
to Eq. (17), the vacuum expectation value elim-
inates unambiguously vacuum field effects. Thus,
linear oscillators, such as antennas, cannot, in
principle, experience the effect of the vacuum
field.
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Whether the origin of radiative line shifts and widths in spontaneous emission should be
attributed to vacuum field fluctuations or to quantum electrodynamic radiation reaction is
shown to depend on the ordering of commuting atomic and field operators.

A well-known heuristic argument due to Welton' shows that vacuum-field fluctuations can be consid-
ered a physical basis for atomic level shifts. Very recently, however, Ackerhalt, Knight, and Eberly
(AKE)' have advanced a fully quantum-electrodynamic treatment of spontaneous emission which attrib-
utes the radiative level shift and width to radiation reaction. In their treatment radiative corrections
are seen as due entirely to the atom's own source field, and not at all to the field's vacuum fluctua-
tions.

In this Letter an attempt is made to explain these differing perspectives. While the AKE calculation
is interesting in its own right, we show below that the AKE results also point to a feature of quantum

theory that, we believe, has not been noted before. We show that an apparently central role in the in-
terpretation of quantum-mechanical calculations may be played by the ordering of commuting operators.

For simplicity we consider the quantum-electrodynamic radiative corrections to a fictitious atom
having only two energy levels. It is then described by &„P„and J,', the energy, raising, and lower-
ing operators, which are normalized to satisfy the usual commutation rules, [&„R,) = +&, and [R„R ]
=2&s. We take the interaction Hamiltonian in the diPole aPProximation and neglect theA, s term (we use
the notation of Ref. 2).

The Hamiltonian for the illustrative problem reduces to

II = h&uoRs+i ((uodlc)[R, —R ]A.,(0)+Q„her „a z a z,

where (d, is the unperturbed transition frequency
between the two atomic states and d is the magni-
tude of the electric dipole matrix element be-
tween the two unperturbed energy eigenstates.

Qs(0) is the component of the vector potential,

! A(r), along the direction of the dipole moment,
evaluated at the center of the atom,

2mkc' '"
A, (0) =P e ~(a, +a,~).


