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two factors of S,." For a frequency shift co =24,
and Pl&u —2&s I &1 the spectrum is proportional to
exp[8&(~ —2&,)], with y = p, /(m, * —p, ), while for
P((u —2&, ) ) 1 the spectrum varies as (&u —283) 'l2.

Again the spectrum is thermally broadened com-
pared with the two-roton Raman spectrum. The
ratio of the intensities of the two —He'-roton and
two-roton Raman spectra is approximately (n, /
n, )', where n, and n, a,re the He' and He' densi-
ties, respectively.

Raman scattering in which a He roton near P,
and a He' roton near 0, (where the density of
states in each case is largest) are created is for-
bidden by momentum conservation when 44 & ks.
Thus Raman scattering at a frequency shift ~ -6,
+6, would not be expected to show any special
feature.
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Series expansions for spin-spin correlations of sin. pie-cubic, bcc, and square lattice
Ising ferromagnets for general field and temperature have been analyzed. To within the
attainable precision (of + 1 to + 5') the exponents v' and v are consistent with scaling
predictions. Deviations of the scattering from Ornstein-Zernike forms are significantly
larger quantitatively than above T~; the second-moment correlation lengths verify $ &+(T')/

&, (T) =1.96+0.OS as &-~,'.

The behavior of the spin-spin correlation func-
tions, and thence of the critical scattering, in Is-
ing models has been studied in considerable de-
tail as the critical point is approached along the
critical "isochore" (or H=O} above T, .' ' We re-
port here the results of the first calculations by
series expansion techniques which include the
complete field dependence, so enabling one to
study the scattering in zero field belo~ T, (i.e.,
along the phase boundary} and al the critical tem-
perature as a function of field H. To within the
comparatively low precision attainable (+1 to
+ 5%%uo}, the estimated exponent values confirm
scaling predictions (but they throw little new
light on "hyperscaling" relations such as dv' = 2
—a', etc.'}. More significantly, the calculations

reveal large deviations in the form and scale of
the critical scattering from the Qrnstein-Zernike
perdictions. These have been elucidated quanti-
tatively and should be susceptible to experimen-
tal test (as have similar predictions above T,}."

Series expansions were generated in powers of
the variables

u =x' = exp(- 4J/a, T} and

y = exp( —2mH/k s T},

for the correlation functions

of nearest-neighbor Ising models using the semi-
invariant techniques as applied by Jasnow and
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TABI E I. Coefficients ~2 „' in expansion pf(II Tc)
[The values used for &~ were those of

Sykes et al. (Hef. 15).]

TABLE II, Coefficients ~2 „+& in the expansion
p, (0,T) =pm, „,q u" +".

sc
CBl

bcc
Cm

2 n

sq
Cm2

2 n+5

bcc
W&n+ 7

Sq

2sn+ 3

0.167 497
0.320 924
0.459 546
0.583 309
0.700 214
0.809 035
0.913 371

0.182 201
0.327 507
0.450 116
0.559 239
0.661408
0.756 714

0.066 945
0.125 332
0.187 572
0.243 820
0.310 193
0.430258

Mortis." From these data, series were con-
structed for the moments'

p, ,(H, T) =+g~/a) 'I'(r, H, T),

0
1
2
3

5
6
7
8
9

10
11
12

24
—24
528

—960
8496

—21 312
125 904

—380 016
1 813416

—6 046 440
25 675 200

32
—32

0
960

—2048
1792

19 136
—66 688
106 240
252 832

—1 566 016
3 649 248

566 592

16
272

3248
32 768

299 072

where a denotes the nearest-neighbor lattice
spacing, for the second-moment correlation
length $,(H, T') defined by

g, '/a'= p, (H, T)/2d p, (H, T),
'

and for other functions involving the correlations.
Note that p, = y, ~ X ~ is proportional to the zero-
angle scattering or thermodynamic susceptibility,
which has previously been extensively studied. "
The various single-variable series (for T= T, or
H=0, T & T,) were analyzed by standard ratio and
Pade approximate techniques" to estimate criti-
cal-point behavior in terms of

f = ( T/T, ) —l and It = mH/k B T, .

On the n itical isotherm, T= T„seven terms
in powers of y were obtained for the simple-cubic

(sc) (d=3) and square (sq) (d=2) lattices, but
only six for the bcc lattice. " The series for p, ,
are reproduced in Tables I and II; note that the
series for p., are already in the literature. ' An

interfering, nonphysical singularity near y = —I
was observed for all three lattices and Euler
transforms of the form zo =(1+c)y/(1+ cy) were
helpful in the analysis. The correlation length
could be described by

g„(H, T,) =(f,'a/h" )(l —e, 'h~+ ~ ~ j (6)

as H-0', and corresponding forms held for the
moments p,„p„and p, . The estimates for the
exponents v' and amplitudes f,' are shown in Ta-
ble III. The exponent values may be compared
with the scaling prediction' 2v'=2v/P5=2v/(P + y)
which yields 2v'=~ —-1.066 ~ ~ ~ for d=2, and, us-

TABLE III. Summary of series estimates and exact results, and com-
parison with mean-field theory (MFT). The values used for.& +, v, and

g are those in Ref. 1 (for 6 see Bef. 10). The square-lattice values for
2v' aud f+/f are exact; so are the MFT results.

2v f) '/fg f'/f

sc

bcc

1.06
+ 0.02

0.84
+ 0.03

0.84
+ 0.03

0.233
+ 0.004

0.257
+ 0.008

0.242
+ 0.010

1.28
+ 0.04

1.25
+ 0.10

0.176
+ 0.005

0.244
+ 0,001

0.227
& 0.005

3.23
~ 0.08

1.96
+ 0.03

1.96 0.414
+ 0.09

1.31 0.898
+ 0.04

1.27 0.906
+ 0.06

MFT
d =2 2/3 0.34668
MFT
d = 3 2/3 0.28'3 06

0.353 55 v 2

0.288 68 W2
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ing accepted values, ""2 v' =0.823 + 0.008 for
d = 3. The agreement is good considering the
relatively low precision; within appreciably larg-
er uncertainties the second and fourth moments
also yield agreement when values for y'= (5 —1)/
5 = y/P 5 are used. The amplitude estimates may
be compared with the mean-field and Bethe-ap-
proximation results" shown in Table III. (For
these approximations one has 2v'= —,

' which is
clearly erroneous, as expected. )

The singular correction exponent f in (6) was
estimated by studying the coefficients of the se-
ries for ($,)"" . For the sc lattice the result is
&= 0.77~0~» and the same estimate follows from
the p, , series. The bcc lattice data confirm the
same value but within uncertainties of, ,",. No

significant conclusions could be drawn for the sq
lattice. The amplitudes of the singular correc-
tion are e,'=0.56~~",, (sc) and 0.41 +0.20 (bcc);
note that although these values are similar they
are not expected to be "universal. " The quoted
uncertainties assume the sealing prediction for
v' is exact. The same singular corrections have
been noticed before in the magnetization by Gaunt

and Sykes" (who argue for the relation" ( =1
—I/5).

On the phase boundary, H=0, T T(„el vee n

terms in powers of u were obtained for the sc
lattice, thirteen for the bce, and five for the

square lattice. " The series, especially for the
bcc lattice, behave poorly so that extrapolation
is not very certain. However, in view of the esti-
mate" 2v= 1.282 +0.005 it is evident from Table
III that the results are consistent with the scaling
prediction v'= v. In two dimensions this is, of
course, an exact result. ' To within the limited
precision, the equality y'= y =1.250 is preferred
by the p, , series, to the suggestion of a break-
down of scaling with y' =1.31.'

Assuming' that v'= v=~4, the correlation-
length amplitudes in

can be reliably estimated (see Table III). The ra-
tio of f, to the corresponding amplitude f, ' for
T& T, should be universal, depending, for Ising
systems, only on d. The evidence for the sc and
bcc lattices supports this to a precision of 2% or
better. "

On the other hand the f, ' for $, must be distin-
guished carefully from the amplitudes f ' for the
true range of correlation, which is defined in
terms of the exponential decay of I'(r), or from
the nearest singularity to the real k axis in the

1/D(x') =1+x' —Z x +& x' —~ ~ ~, (10)

while" as x —~ on the zero-field (+) loci (i.e.,
t —0'), one expects

D(x') =(D /x' ")(I+8 x ' "' "+B x ' '+ ~ ~ ~ )
(t )(0). (11)

Ornstein- Zernike (OZ) theory" corresponds to
Z, = Z = ~ ~ = 0 in (10) and q = 0, 8, =0, and v =-'

in (11). Above T, a rather accurate approximant
was shown to be"

D'(x') = (1+y, 'x') "t'/(I+&, x'), (12'

where $, =1+-,'rip, ' and y, =0.0294 for d =2, and

y, = 0.14 to 0.16 for d =3. As is evident from the
plot in Fig. 1 the fractional deviations from QZ
theory are, here, numerically quite small over
a wide range of x. In particular Z4', which may
be estimated from p.„ takes the values 1.1~10 '
(d = 2) a.nd (6.5+ 0.8) x 10 ' (d = 3).

Below' T„however, the deviations from the OZ
form must be much larger. This follows directly
from the continuity of the correlation functions
through T, and the values of the ratios f, '/f, and
C'/C (for the susceptibility amplitudes') which
together determine D„(see Table III). The es-
sentially common values of D„ for the bcc and
sc lattices again confirm the universality of the
scaling function. For the sc lattice we estimate
Z, =(1.2+0.6) &&10 '. The bcc data also indicate

scattering function

)t(k, H, T) = I'(k, H, T)=Q;e'"''I'(r, H, T). (8)

Above T, it was found' that f '/f, '=1.00005 for
d = 2 and 1.0003 for d = 3, so that $,(T) is very
closely equal to ((T). Except within Ornstein-
Zernike theory, ' however, this is not the case
below T, . Thus, it is known rigorously" that

f '/f = 2 in two dimensions; it follows from Ta, —

ble III that f /f, =1.62 for the square lattice. It
ha, s been argued" that one might expect f '/f
=1.5 for the true range when d =3. If this is ac-
cepted then f /f, =1.31, but we have not been
able to check this at all precisely, as will be-
come clear.

According to scaling theory the shape of the
critical scattering can be described on each of
the critical loci considered above"' by

y(k, H, T) = )t,(H, T)D($,'k'), (9)

where D(x') =D', D', or D depends on the locus.
For small x (i.e., k-o), one should always have

928
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a dominant simple pole, of the form

(1 ~ 2)s+qi2
D x
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FIG. l. Approximants for the scaling fnnction8(x2)
reduced by the "zero order approximant" (Ref. 1) &p(x )
=(1+/& ) +" with g =1- ~g, versus the variable
x =x~j(3+x ) (chosen for convenience}.

a similar value but with a much larger uncertain-
ty.

Unfortunately the values of D preclude the
construction of a satisfactory approximant of the
simple form (12). For the square lattice we have
found that the expression

(x2) —Il p y p(] + qx )~~ j

with P =0.406 and P= (1.678)' provides a reason-
able approximant. The square root branch point
represents the rigorously known asymptotic de-
cay of correlation in the square lattice Ising mod-
el below T,."" The behavior of (13) for large x
(s ~ 1 in Fig. 1) cannot be completely accurate
since, like (12), it does not reproduce the form
of the correction factor in (ll) which, in turn,
represents the energylike singularity, }t}'
which should occur" in 1 =)((k, T) at constant k.
However, numerical study suggests that this will
be significant only for very large x.

In three dimensions there is more freedom in
the choice of an approximant. It seems reason-
able to expect" the OZ decay law still to apply
am}ay from T,. Accordingly an approximant with

with P' =1+si)y" +8(y" —y"'), was tried and
found satisfactory for parameter values I9 =0.118,
cp' =0.5150, and y" =0.1245. The position of the
pole in (14), at x'= —0.9645, fixes the amplitude
ratios as f /f, =1.018 and f '/f =1.92. However,
these estimates are very sensitive to the as-
sumed form of the approximant and cannot be
considered reliable. Note again that the singular
correction factor in (11) is not reproduced by
(14).

Sca,ling function approximants D'(x') may also
be developed for the critical isotherm but, as
they are of less practical application, they are
not reported here.

In conclusion we see that significant deviations
from Qrnstein-Zernike theory arise in the scat-
tering below T,. Despite the numerical uncer-
tainties, the curves in Fig. 1 should give a quan-
titatively quite accurate representation of the
true behavior.
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We have observed the Raman scattering spectrum from finite crystals of MgO. Lines
have been observed at 595, 719, and 1096 cm '. Very good agreement is obtained between
the observed lines and the lattice dynamic theory of finite crystals. However, no agree-
ment is obtained with the macroscopic theory.

The nature of vibrations of finite crystals has
received a great deal of both theoretical and ex-
perimental interest recently. In this Letter we
wish to report what we believe to be the first di-
rect observation of such vibrations by Raman
spectroscopy. %e have observed the modes of
vibration in cubic microcrystals of MgQ.

Theoretical investigations of such modes have
followed 'two dlrectlo118: (1) a macroscopic ap-
proach, and (2) a lattice dynamic approach. Al-
though most of the theoretical work has been car-
ried out on a slab geometry, we will only con-
sider work done on a spherical geometry as this
geometry is more representative of our experi-
mental conditions, Frohlich' first investigated
the modes of vibration of an isolated sphere using
the macroscopic approach. He assumed the radi-
us of the sphere to be small with respect to the
wavelength of the polarization wave. For an ion-
ic crystal of cubic symmetry only one vibration-
al mode was found to occur lying between the
transverse optic frequency co~ and the longitudi-
nal optic frequency +~ of the bulk crystal. Fuchs
and Kliewer2 and Ruppin and Englmans have ex-
tended Frohlich's result to other geometries and
have refined Frohlich's calculations for the
sphere. Fuchs and Kliewer2 have solved the wave
equation for the sphere, and Buppin and Englmans
have included both retardation effects and the ef-
fects of a dielectric media surrounding the sphere.

Two series of modes then result. One series lies
in the gap between co~ and (d~ and a second series
lies below ~~. Genzel and Martin' and more re-
cently Barker' have attempted to include the ef-
fect of neighboring particles on the effective di-
electric function of the macroscopic theory and
have included this effect on the vibrational modes.

Maradudin and gneiss' have approached the
problem of finite crystals from the lattice dynam-
ic viewpoint, and have employed the Kellermann
model of cubic ionic crystals. 7 They have found
two vibrational modes for cubic crystals which
lie between ~~ and co~. These modes become
degenerate for spherical crystals when k = 0,
where k is the wave vector of the mode. As k in-
creases, one mode tends towards v~ and the
other tends towards u~. Lucas' has modified the
results of Maradudin and gneiss for spherical
particles to include retardation effects with the
result that the degeneracy at k = 0 is lifted. Qne
mode is the same as obtained by Maradudin and
Weiss and lies in the gap between m~ and ~~ for
k large. The other mode has frequency greater
than su~ and tends to the line +=kgb. The disper-
sion curves are given by Lucas. It is seen that
the macroscopic theory and the lattice dynamic
theory give very different results for the vibra-
tional modes of a sphere.

Experimental results on the modes of finite
crystals of MgQ have been reported by several


