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The long-range behaviors (5) and (6) decrease slower at infinity than the first Debye term r» '~s

x exp(- r»), in agreement with previous three-dimensional findings. "' Nevertheless, the most in-
teresting result is the short-range limit where the foregoing techniques show that the most diverging
nodal graph in a given order n will be the ladder one. This fact allows us to extrapolate Eqs. (4) and

(7) by

lim w, (r») = —eK,(r „)+ (e'/2!)g, '(r») —(es/3!)Ko'(r js) + ~ ~ ~ + [(-e)~/Jr t ]ho~(r „)+ ~ ~

= exp[- eK, (r»)] —1,

thus providing a quite straightforward renormalization of the short-range behavior of g, (r) in accord
with Eq. (6).

We are indebted to Professor D. Montgomery for many enlightening discussions at Les Houches
Summer School which provided the stimulation for the present work. We also thank Professor P. C.
Hemmer for sending a preprint of Ref. 2 before publication and acknowledge the help of Dr. %. E.
Wells in the preparation of the manuscript.
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The energy spectrum of elementary excitations in dilute He -He mixtures in investigat-
ed. using a Feynman type of wave function. It is found that the He energy spectrum lies
below the phonon-roton energy spectrum and exhibits a minimum near the roton minimum.
Some consequences of this energy spectrum are discussed.

Recently, the two-roton Raman spectra of su-
perfluid He'-He' mixtures have been measured. "
The roton energy A4 inferred from these spectra
is practically independent of He' concentration up
to a molar concentration of 31/o, the highest con-
centration used. The roton energy has also been
obtained from measurements of the normal-fluid
density in mixturess by fitting with the formula
p„=n,~ +p„„+p„~, where n, is the He' number
density, ms* is the He' effective mass, and the
last two terms are the contributions of the rotons
and phonons, respectively. The value of 64 ob-

tained in this way decreases markedly with con-
centration, e.g. , 6,~5.1'K at 30% molar concen-
tration, in striking contrast to the Raman-scatter™
ing results. Pitaevski suggested recently that
this could be explained if the energy spectrum of
He excitations in mixtures exhibited a minimum
similar to the roton minimum in pure He'.

We first present a simple argument which in-
dicates that Pitaevski is probably correct. If we
construct a wave function for a localized excita-
tion (roton) in the mixture (for example in the
manner of Feynman and Cohen' ) and one of the
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atoms in the excitation is a He', then we can re-
lax the condition that the wave function be totally
symmetric. Neglecting the mass difference m,
-~, this will lead to a lowering of the energy.
At small wave vectors the energy of the He' ex-
citations will have the form 5'k'/2~* and will
lie below the phonon branch. At large wave vec-
tors this argument indicates that the energy of
the He' excitations will probably lie below that of
the rotons and exhibit a min~mum. A detailed cal-
culation given below confirms this result. This
argument is not applicable to otiier impurities,
e.g. , electrons or protons in He', because of the
very different potentials and masses.

Suppose a He' atom is dissolved in superfluid
He'. The ground-state wave function is C(K, r„

... , r„), where 0 is the position of the He' and r„

... ,r„are the positions of the He' atoms. The
wave function for an excitation of momentum @k
in the liquid is taken in the form +C, as suggest-
ed'by Feynman and Cohen. " We choose

F = a exp(ik 0) + bP;f (0—r, ) exp(ik ~ r,.), (1)

where g and P are coefficients to be chosen by
minimizing the energy and f (x) is a smooth func-
tion which vanishes for y &d. The effects of back-
flow have been neglected in (1). The energy of
the excitation is

2~ a'+ 2abI, + b'(I, +I,) '

where derivatives of f have been neglected, o
=~,/~, and

I, = fd'y p, (r) f'(y), I, = fd'xp34(r) f (x) exp(ik ~ r),

I3= fdax, dsx2P3„(r„r,)f(x,)f(x2) exp[i% (r, —r~)].
(3)

In (3), p„(r) is the probability of finding a He'
atom at r and p,«(r„r, ) is the probability of find-
ing a He' at r, and another at r, if, in each case,
the He is at the origin. Minimizing (2) with re-
spect to a/b and choosing the lower-energy sym-
metric state (a/b &0) gives

1 2eI2E= , G=2~ 1+6 ' " (D'+ 4ni, i,')'i' D'—
where D =o.(I, +I,)-I,. We may approximate the
integrals in (3) as follows. We choose f(r) =1
for y &d and zero otherwise. When 4&y„ the in-
terparticle spacing I, is a measure of the number
of He' atoms in the excitation. This is left as a
variable parameter. For pd & I a good approxi-
mation is I,=p„(k). In I, we use the superposi-
tion approximation, n,p,«(r„r, ) =p„(r,)p„(r,)
xp«(r, —r, ), where no is the He~ number density;
then for kd & 1 a good approximation is I, =I,p«(k).
This is proba, bly an underestimate, as we have
not taken into account the most favorable configu-
rations of the three atoms. The energy is not
very sensitive to Ig for 1&I,&8. For I, very
large, G„=o.[1+P«(k)] —1 and E„g esoover into
the roton energy found by Feynman. ' This indi-
cates that the addition of a small amount of He3

will not affect the roton gap A4. If we allow d- 0
and I, «1, it is necessary to include the kinetic-
energy terms arising from Vf and the lowest
energy will be obtained with b = 0 (a single He'
excitation). This is appropriate for small k. To
estimate the energy for &= 2 A ', we need to

know the structure factor g, (k). This was ob-
tained by putting g, (k) =p«(k) —b, (k). For p«(k)
the experimental values of Goldstein and Reekie'
were used. b, {k) was estimated from the calcula-
tions of Massey, Woo, and Tan' by taking the
Fourier transform of the difference of their cal-
culated pair correlation functions, g«(~) -g„(z).
The results are given in Fig. 1.. Because of the
larger zero-point motion and larger volume (by
about 30%%uo) of a He' atom in He', the maximum in

I'&3~(k) is at a. smaller value of k, -1.9 A ', than

.5
J.S

FIG. &. The structure factors p&4(k) agd p44(k).
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FIG. 2. Sketch of the energy spectrum of He excita-
tions (dashed line) in He -He mixtures and the phonon-
roton (solid line) energy spectrum. We have assumed
&& is of the order of magnitude found by Woerner
(aef. S).

that in p«and g, is somewhat broader. We rep-
resent the He spectrum for P - 1.9 A ' by E„=A3
+ (k /2 p )(k —k~), with k3 = 1.9 A '. From (4) and
the data of Fig. 1 we find G„=0.64, 6,=16.5 K,
and a/b =0.4 for I, =2. The value of b., varies by
10%%uo for 1 &I, & 8. b,s is probably too large, as we
have omitted backflow effects. The roton gap b, 4, 8-
calculated omitting backflow, ' is 19 K and the 0

ratio 6,/6, =0.86. The important result is that
the energy of the He' excitations lies below the
roton spectrum. A sketch of the spectrum is
given in Fig. 2. The effective mass ]LL, & p„cor-
responding to the fact thatg, (k) is broader than

p«(k). To summarize, the energy spectrum of
He' excitations in He' has the form E, =8'k'/2~*
at small wave vectors and E, =b, ,+8'(k —k, )'/2p,
for &-1.9 A '. For convenience we refer to
these latter excitations as He' rotons. As rotons
are very localized excitations, normal rotons
may also exist in the mixtures up to quite high
concentrations.

There are a number of interesting consequences
of this form for the spectrum of He excitations. The impurity contribution to the normal fluid density,
p„;, the energy density E;, and the He' chemical potentia. l P, are respectively given by (in the nonde-
generate ease)

„ 1+ ', (k k, '/m, -*kr)A exp(- P~,)
Pll1 3 4 1 +A exp( PZ )

3 1+—,*A(a,/a7'+ ) exp( —Pa, ()2 1+~ exp(- pa, )

~,p = kT in', —2kT in(m, *kT—/27(k ) —kT in[1+A exp(- ~,)],

(5)

(6)

S,(k, (d) = (mn, /kT)(~/~*)'" exp(- py~(d -&,~)/)1+ & exp(- pa, ) ],
where y=1, &u &A„and y= p /(~* —(((,), ~ &b, The function is broadened by the thermal distribution
of the particles. In the degenerate case,

(8)

where P=(kT) ' andA =(25'k, '/~*kT)(p, /m, ~)'". At T =1.5'K we estimate 8'k, '/~*kT =13 andA ='7.
The measurements of p„of Sobolev and Esel'son' have been fitted with the formula p„= p„,. +p„„by

Woerner. ' At a He' molar concentration of ll%%uz and T & 1.5'K the best fit was obtained with b,, = 5 +1.5'
K and (5'k, '/m, *kT)A = 30. The error in this latter value may be large (a factor of 3) and the data are
not sufficiently accurate over a wide temperature range to determine&. The impurity contribution to
the specific heat follows by differentiation of E, The He' chemical potential also reflects the energy
spectrum of the excitations. p can be obtained from a measurement of the He concentration in the
vapor in equilibrium with the liquid. '

The He' dynamic structure factor S,(k, &u) for k= k, and &u =6, in the nondegenerate ca.se is

2 r/2 &ac 1/2
(k )

M Vs (~ g + s )1/2 . M
( g )

KP2 8 (9)

where eF is the Fermi energy, imaginary terms are to be omitted, and —GF &(~ —+g&eF(~ —Q/Q).
As a result of the strong absorption, it may not be possible to observe this function by neutron scatter-
ing.

The possibility also exists of observing a Raman-scattering process in which two He rotons are cre-
ated. The spectrum, neglecting any possible interactions between the particles, is the convolution of
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two factors of S,." For a frequency shift co =24,
and Pl&u —2&s I &1 the spectrum is proportional to
exp[8&(~ —2&,)], with y = p, /(m, * —p, ), while for
P((u —2&, ) ) 1 the spectrum varies as (&u —283) 'l2.

Again the spectrum is thermally broadened com-
pared with the two-roton Raman spectrum. The
ratio of the intensities of the two —He'-roton and
two-roton Raman spectra is approximately (n, /
n, )', where n, and n, a,re the He' and He' densi-
ties, respectively.

Raman scattering in which a He roton near P,
and a He' roton near 0, (where the density of
states in each case is largest) are created is for-
bidden by momentum conservation when 44 & ks.
Thus Raman scattering at a frequency shift ~ -6,
+6, would not be expected to show any special
feature.
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Series expansions for spin-spin correlations of sin. pie-cubic, bcc, and square lattice
Ising ferromagnets for general field and temperature have been analyzed. To within the
attainable precision (of + 1 to + 5') the exponents v' and v are consistent with scaling
predictions. Deviations of the scattering from Ornstein-Zernike forms are significantly
larger quantitatively than above T~; the second-moment correlation lengths verify $ &+(T')/

&, (T) =1.96+0.OS as &-~,'.

The behavior of the spin-spin correlation func-
tions, and thence of the critical scattering, in Is-
ing models has been studied in considerable de-
tail as the critical point is approached along the
critical "isochore" (or H=O} above T, .' ' We re-
port here the results of the first calculations by
series expansion techniques which include the
complete field dependence, so enabling one to
study the scattering in zero field belo~ T, (i.e.,
along the phase boundary} and al the critical tem-
perature as a function of field H. To within the
comparatively low precision attainable (+1 to
+ 5%%uo}, the estimated exponent values confirm
scaling predictions (but they throw little new
light on "hyperscaling" relations such as dv' = 2
—a', etc.'}. More significantly, the calculations

reveal large deviations in the form and scale of
the critical scattering from the Qrnstein-Zernike
perdictions. These have been elucidated quanti-
tatively and should be susceptible to experimen-
tal test (as have similar predictions above T,}."

Series expansions were generated in powers of
the variables

u =x' = exp(- 4J/a, T} and

y = exp( —2mH/k s T},

for the correlation functions

of nearest-neighbor Ising models using the semi-
invariant techniques as applied by Jasnow and


