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Equilibrium Pair-Correlation Function for a Two-Dimensional Plasma

C. Deutsch
Labo~atoixe de Physiqle des PEasmas, Unieersite Pa~is XI, Centre d'Orsay, 91405 A say, France

and

M. Lavaud
Centre de Recherches sur les Hautes Temperatures, Centre ¹tional de la Recherche Scientifique,

45100 Orleans -la-Source, France
(Received 7 August 1973)

The pair-correlation function for a one-component, two-dimensional classical plasma
is investigated within the framework of the Debye approximation along the lines of the
Cohen-Murphy method through a potential of average force, m2(r), up to third order in
the plasma parameter q /hBT. The w2(r) short-range behavior appears to be an easily
renormalizable quantity, while the long-range behavior confirms previous three-dimen-
sional results.

The purpose of this Letter is to investigate the next higher corrections to the Debye high-tempera-
ture approximation of the radial distribution function for a two-dimensional Coulomb system of point
particles interacting via the potential q in(r/L). L = 1 determines the zero of the potential. The moti-
vations for this work are numerous. The most evident one is to seek analogies or differences with the
well-known three-tlimensional situation. Moreover, the equilibrium properties of the two-dimensional
Coulomb gas are interesting in their own right. They provide insight to the real strongly magnetized
plasma problem. ' They could also allow some insights into the condensation processes of charged
particles at low temperature. In this work, we address ourselves to the well-known one-component
model with a continuous background. This choice proves to be particularly well justified in the present
case if one remembers' that for &BY' & q', the one- and two-component Coulomb systems have the
same equation of state, p = (h, T —&q')Io, with p =&/P and 2&/V, respectively. We consider the pair-
correlation function g, (r) in the form used recently by Cohen and Murphy' for the three-dimensional
plasma:

g, (r) = exp[-tc, (r)],

where tc, (r) is the potential of average force.
We analyze zo, (r) in a nodal-graph expansion in the dimensionless plasma parameter e = q'/hsT «1.

As usual, the first-order term corresponds to the long-range resummation of the bare Coulomb poten-
tial,

tc, '(r») = —2v d p 1
= —Pq'h&&i —i, P = (h&T) ',V(P)e'P'

1 p& P -k&DJ (2)

pictured in Fig. 1 and already considered by Hauge and Hemmer; here AD' = h, T/2vq'p, and —hBT V(p)
=q'/p' denotes the Fourier transform of the Coulomb potential. The foregoing result has also been ob-
tained by Montgomery and Vahala through the Bogoliubov- Born-Green-Kirkwood- Yvon hierarchy. It
will be shown in a more detailed work' that in the present case the potential-of-average-force tech-
niques' allow a determination order by order of the higher nodal diagrams. Therefore a graph of ox

der n is given by its t renormalized Debye bounds and its k field points with n = l —4 in accord with the

FIG. 1. First-order Debye chain.
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FIG. 2. Second-order graphs entering zp2 {rf2).

Salpeter' formulation of the Debye scheme. So, the second order is (see Fig. 2)

u, '(r„)=(c'/2!)[K,'(r») 2—f""duuuo'(u)I, (u)~,(r„)-2I,(r„)f"duuu, '(u)

+-',
f,""duuK, '(u)[-uI, (u)K,(r„)+I,(u)r„K(r„)]

+-.' f" duuK, '(u)[-K, (u)r„I, (r»)+uK, (u)I,(r„)]], (3)
12

with r» evaluated in units of XD. I„(x) and K„(x) refer to the modified Bessel functions of the first and
second kind, respectively. Equation (3) yields in a straight-forward way the limit behaviors

lim u12'(r, 2)
—(e'/2!)[1n(yr»/2)]',

12 12

with y the Euler constant. Now, it is important to notice that the summability at the origin of the log-
arithmic potential allows us to extend to the following order in c the above procedure by using the fi-
nite Fourier transforms

fd'r e"' (Debye)" = 2~f"dr rZ, (pr)K,"(r) &+

for all n, while the three-dimensional analog

411f, drrsin(pr)e ""/r"

diverges for n &2, so that further resummations are necessary' in this case. Therefore we get u1,'(r»)
as a sum of the graphs given in Fig. 3, with an explicit expression much too long to be given here and
reserved for a future work. ' However, we are mainly interested in the limit behaviors

lim zo2s(r») = e (- [ln(,'-yr, 2)] /3! +0.39091n(2yr, 2)},

lim so, '(r») = e (-,p)" [(-0.3073/3! +2D)r»'" exp(-r») +longest chain], (8)

with D a finite constant and

lim [longest chain] &r»'" exp(- r»).
Xy2 ~ oo
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FIG. 8. Third-order graphs entering zv2 {&f2).
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The long-range behaviors (5) and (6) decrease slower at infinity than the first Debye term r» '~s

x exp(- r»), in agreement with previous three-dimensional findings. "' Nevertheless, the most in-
teresting result is the short-range limit where the foregoing techniques show that the most diverging
nodal graph in a given order n will be the ladder one. This fact allows us to extrapolate Eqs. (4) and

(7) by

lim w, (r») = —eK,(r „)+ (e'/2!)g, '(r») —(es/3!)Ko'(r js) + ~ ~ ~ + [(-e)~/Jr t ]ho~(r „)+ ~ ~

= exp[- eK, (r»)] —1,

thus providing a quite straightforward renormalization of the short-range behavior of g, (r) in accord
with Eq. (6).
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The energy spectrum of elementary excitations in dilute He -He mixtures in investigat-
ed. using a Feynman type of wave function. It is found that the He energy spectrum lies
below the phonon-roton energy spectrum and exhibits a minimum near the roton minimum.
Some consequences of this energy spectrum are discussed.

Recently, the two-roton Raman spectra of su-
perfluid He'-He' mixtures have been measured. "
The roton energy A4 inferred from these spectra
is practically independent of He' concentration up
to a molar concentration of 31/o, the highest con-
centration used. The roton energy has also been
obtained from measurements of the normal-fluid
density in mixturess by fitting with the formula
p„=n,~ +p„„+p„~, where n, is the He' number
density, ms* is the He' effective mass, and the
last two terms are the contributions of the rotons
and phonons, respectively. The value of 64 ob-

tained in this way decreases markedly with con-
centration, e.g. , 6,~5.1'K at 30% molar concen-
tration, in striking contrast to the Raman-scatter™
ing results. Pitaevski suggested recently that
this could be explained if the energy spectrum of
He excitations in mixtures exhibited a minimum
similar to the roton minimum in pure He'.

We first present a simple argument which in-
dicates that Pitaevski is probably correct. If we
construct a wave function for a localized excita-
tion (roton) in the mixture (for example in the
manner of Feynman and Cohen' ) and one of the


