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same [=(F)*/?2en£®] for B < §H,,, with continuous
transitions for larger B.

Although our calculation has been carried out
in a particularly simple regime, we expect that
the general behavior we predict should be ob-
served in more general cases. Thus, further ex-
perimental work characterizing resistive transi-
tions in thin-film superconductors should be in-
teresting, particularly observations of when con-
tinuous transitions to the normal state are ob-
tained as the electric field strength is increased,
and when discontinuous transitions occur. Some
curves showing discontinuous transitions in thin
films have been obtained by Ogushi, Takayama,
and Shibuya.'® Unfortunately, discontinuous tran-
sitions can also occur if the thermal conductivity
of the substrate is too poor to remove readily the
heat generated so that macroscopic hot normal
regions occur, which we have not considered.
Considerable care must be taken to separate the
two types of effects experimentally. The thin-
film regime is favorable since the total current
is reduced for a constant current density. The
required current density can be further reduced
by working close to the reduced T, although
fluctuations become important and smear out the
transitions in a region too close to 7,."
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The acoustic attenuation for a one-band free-electron metal has been derived using a
generalized scattering function. If the latter has an appreciable backward lobe, the at-
tenuation exhibits an anomalous peak when the sound wavelength is comparable to the
electron mean free path. Similar effects might be observable in the alkalis as a result
of umklapp scattering processes. If so, further study could enhance our understanding
of the electron-phonon interaction in these metals.

The free-electron model of a metal has the
merit that Fermi-surface disturbances due to ap-
plied fields can be expressed in terms of spheri-
cal harmonics. It is well known'® that if the scat-
tering function W(K,k’) depends only on the angle
6 between k and k’, then each spherical harmonic
Y, relaxes towards zero with time constant 7,
given by

1/7,= J/[1 =P ,(cos6)]w(6)de, (1)
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where P, is a Legendre function, W(6) is the dif-
ferential scattering probability, and dQ is the
element of solid angle. Associated with each 7,
is an effective mean free path defined by

lL:UOTL’ (2\)

where v, is the Fermi velocity of the electrons.
A special case is that of isotropic scattering,
where W(6) is independent of 6 so that all the 7,
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are equal to one another.

Bhatia and Moore? have shown that, whereas
the electrical conductivity is proportional to 7,
the acoustic attenuation (in the local limit g7, «< 1,
where ¢ is the magnitude of the sound propagation
vector) is proportional to 7,. Since 7,/7, depends
on W(6), the numerical magnitude of this ratio is
a possible point of contact between theory and ex-
periment. For electron-phonon scattering in
potassium, in particular, much effort has gone
into the experimental® and theoretical®:® deter-
mination of 7,/7,. It appears that, while this
ratio is quite sensitive to the relative proportion
of normal and umklapp scattering events and to
the particular choice of pseudopotential used in
the computation of the electron-phonon matrix
elements, there is at present insufficient data to
enable any given pseudopotential to be favored.

In this paper we present expressions for the
acoustic attenuation valid for all values of the
ql,, i.e., with no restrictions on locality. The
attenuation, as a function of g/,, shows structure
which depends on W(6), so that, in principle,
previous investigations can be extended using
acoustic methods alone. The attenuation has
been evaluated for artificial models in which
W(#6) is highly directional; the resultant anoma -
lies (by comparison with the well-known Pippard
result® for isotropic scattering) may well have a
counterpart in some real metals.

In the limit w7, <1, where w is the sound fre-
quency, and subject to the conditions of charge
and current neutrality in the metal, the attenua-
tion coefficient for transverse sound waves is
given by the formula’

_Nmuvyg 1.3 3a
Y 300, 5/ql,+2.4 » (9)
7/ql,+3.5
9/ql, +e¢-
and for longitudinal waves by
_Nmvyg 2.2
Y 300, 5/q1,+3.3 » (3D
T/ql,+4.4
g/ql4 feee

where N is the number of electrons per unit vol-
ume, m is the electron mass, p is the density of
the metal, and v and v, are the two sound
velocities. The continued fractions are expressed
in terms of the dimensionless parameters g/, ,
which depend on the scattering mechanism through
(1) and (2). If all the g/, are replaced by ¢/,

where /=v,7, then Egs. (3) become identical to
the Pippard expressions.®® For arbitrary W(6)
the attenuation may be evaluated with good accu-
racy by truncating the continued fractions at the
Lth solidus, where L is at least several times
larger than ¢l,. Physically, this procedure is
equivalent to representing the disturbed electron
distribution by a finite series of spherical har-
monics; it is a property of these functions'® that
such an approximation gives a best fit, in the
least-squares sense, to the actual distribution.
In the local limit, g/, <1, the Fermi surface is
adiabatically deformed by the sound wave into an
ellipsoid; the radial difference between this ellip-
soid and the equilibrium sphere can always be
expressed as some linear combination of those
harmonics having L=2. Accordingly, the de-
formed surface continually relaxes back to equi-
librium with time constant 7,, and the attenuation
depends only on this parameter. When the prob-
lem becomes nonlocal, i.e., when gl, exceeds
unity, the distribution begins to build up a peak
on the “effective zone” of the Fermi surface.®
Electrons traveling almost normal to q stay in
phase with the sound wave longer than other elec-
trons and are displaced more. The distribution
then requires more spherical harmonics to rep-
resent it, a fact which is reflected in the slower
convergence rate of the continued fractions and
hence in the need for the inclusion of more terms.
The attenuation then has a functional dependence
on those 7, having L > 2. For arbitrary W(6),
however, the continued fractions approach the
same limits when ¢/, > 1. The limiting values
are 4/n for transverse waves and n/2 for longi-
tudinal waves. In the extreme nonlocal limit,
therefore, the attenuation becomes independent
of the details of the scattering mechanism.

To simulate scattering with a strong forward
lobe, we define

W( )= R,,

=0, otherwise, (4)

0<0,,

where R, and @, are constants. Substitution into
(1) then gives

1/7,=21R,[1 —x, - @ (x,)], (5)
(2L+ 1)@ () =P ;.1 (x) =P, (%), (6)

and where x, =cos®©,. The special case of iso-
tropic scattering can be recovered by setting &,
=m; the 7, then become independent of L, as ex-
pected. In the small-angle limit ©,~0, the 7,
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decrease according to the relation
T,/T,=L(L+1)/6, (N

which can be derived independently under the as-
sumption that the electrons diffuse over the Fer-
mi surface. For small but finite ©, the 7, fol-
low (7) for small L, but ultimately level off to a
constant value for L so large that the angular
separation between neighboring peaks and troughs
on the Y, , is less than ©,. In this regime the
scattering is “catastrophic” in that every colli-
sion randomizes an electron.

To simulate scattering with a strong backward
lobe, we define

W(6) =R, m-6<0,,
=0, otherwise, (8)

where R, and ©, are constants. Substitution into
(1) then gives

l/TL=2'nR2[1 "xz"("l)LQL(xz)], (9)

where x,=cos@©,. Again, the special case of iso-
tropic scattering can be recovered by setting ©,
=7. For small ©,, however, the 7, behave
quite differently according to whether L is even
or odd. This behavior can be made understand-
able by the simple device of decomposing each
collision event into two parts; “diametric” scat-
tering through an angle 7 from a given point on
the Fermi surface to the corresponding antipodal
point, and subsequent small-angle scattering
through an angle of order ©,. By virtue of a
symmetry property of the spherical harmonics,

Y, (1-6, 0+ m=(-DtY, (6, ¢), (10)

it is clear that diametric scattering has no ef-
fect when L is even; only the small -angle compo-
nent is effective in relaxing the distribution. It
is thus not surprising to find that for even L, the
7, decrease initially according to (7). When L is
odd, however, diametric scattering is highly ef-
fective, and the first few odd 7, are smaller than
7, by a factor of order ©,%. As L increases, the
even and odd 7, approach each other until in the
catastrophic limit 7, ~27, for all sufficiently
large L.

The attenuation may now be computed by sub-
stituting (5) or (9) into (3). Either g/, or gl, may
be used as the independent variable and index of
nonlocality. Although ¢/, does not appear in the
expressions (3) for the attenuation, it is conven-
ient to use it when resistivity and attenuation are
to be compared. The result for shear waves!! is
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FIG. 1. Calculated shear-wave attenuation as a func-
tion of gl; showing Pippard function for isotropic scat-
tering (solid curve), some results for forward scatter-
ing (dashed curves below solid curve), and some re-
sults for backward scattering (dashed curves above
solid curve). The parameters @, and ©, are defined in
the text. .

shown in Fig. 1. In this diagram, the solid curve
is the Pippard function for isotropic scattering.
The primary reason for deviations from the Pip-
pard function is the spread in values of the ratio
7,/T,, which is less than unity for forward scat-
tering (reaching the value % in the diffusive limit
©,~0) and greater than unity for backward scat-
tering (increasing without limit as ©,?). The
effects of spread in 7,/7, may be eliminated by
plotting the attenuation as a function of ¢/,, as
shown in Fig. 2. This representation is more
natural for internal comparison of attenuation
data, since all models then coincide in the local
limit as well as in the nonlocal limit.'? In Fig. 2,
the small deviations from the Pippard function
due to forward scattering are insignificant (the
scale being logarithmic) and are not shown.
Backward scattering gives rise to a pronounced
anomaly, however; this takes the form of a peak
at intermediate values of g/, and a delayed ap-
proach to the nonlocal limit.?* The effect is di-
luted when backward and forward scattering are
combined [by mixing together terms like (5) and
(9) in various proportions ], but does not disap-
pear until the relative proportion of backward
scattering is quite small (this last calculation is
not illustrated). The phenomenon is, of course,
directly attributable to the disparity in magnitude
between the first few even and odd 7,.
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FIG. 2. Calculated shear-wave attenuation as a func-
tion of gl, showing Pippard function (solid curve) and
anomalous peak due to backward scattering. The pa-
rameter ©, is defined in the text. Similar results ob-
tain for longitudinal waves.

Among the real metals, the most likely candi-
dates for the observation of the predicted effect
would seem to be the alkalis. These metals have
nearly spherical Fermi surfaces, and in the re-
peated zone scheme the neighboring surfaces are
close enough to ensure that any scattering mech-
anism with a strong forward lobe is likely to
have a strong backward lobe as well, as a result
of umklapp processes. This situation applies for
low-temperature electron-phonon scattering, ex-
cept at the very lowest temperatures (about 1°K
in potassium) when umklapp processes are frozen
out. The parameter &, defined in (8) thus corre-
sponds roughly to the angular size of the “hot
spots” on the Fermi surface, where umklapp
processes are most probable. However, our
rather crude model can easily be improved upon;
for potassium the machinery for calculating 7,/
7, using realistic phonon spectra and electron
wave functions has in fact already been set up,*®
but the computation of the attenuation as a func-
tion of temperature and frequency using (3) is a
numerical exercise which might be worth the ef-
fort. The result should depend on the particular
pseudopotentials used; comparison between such
detailed theory and experiment might thus prove
to be particularly revealing.

In the case of the alkalis, there are experimen-
tal difficulties in determining the total attenuation
absolutely. A possible approach is to use the
fact that a strong magnetic field can remove

some or all of the electronic attenuation* (for
longitudinal waves an oblique field is required?®).
Some suggestive results have recently been ob -
tained in cesium'® for which the shear-wave at-
tenuation was found to scale less than linearly
with frequency. This could be interpreted as a
delayed approach to the nonlocal limit, similar
to that shown by some of the model calculations
in Fig. 2. In superconductors, of course, the at-
tenuation can be measured more easily, but in
all known superconductors other real-metal ef-
fects are likely to complicate the picture. Never-
theless, peculiarities in the scattering mecha-
nism can no longer be ruled out as the possible
source of ultrasonic anomalies.
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