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in superconductors have long been thought to be
overdamped because the electron-lattice interac-
tion readily transfers energy and momentum from
the electron-pair fluid to the lattice. "
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We study the nonlinear response of vortices in thin-film superconductors to strong
electric fields. In the region of small magnetic fields we find unstable regions of nega-
tive differential conductivity. The voltage along the film is therfore predicted to jump
from a lower flux-flow value to a higher normal-state value when the transport current
is increased beyond the maximum value the flux-Cow state can support.

In previous publications' 4 we have investigated
the dissipation rates and changes in structure of
vortices in a superconductor when forced into
motion by the application of an electric field E.
These investigations were confined to the linear
response in weak electric fields. In the present
paper we extend our calculations to investigate
nonlinear effects.

For the present we confine our attention to
films whose thickness d is much less than the
penetration depth A. for magnetic fields. For
thicker films the magnetic field generated by the
transport current becomes important and, even

in the absence of an externally applied magnetic
field, causes the superconducting structure to
break up into an inhomogeneous intermediate-
state structure before becoming normal. Thin
films, on the other hand, remain homogeneous
in this case up to the critical current, where a
sudden transition to the normal state occurs with
the order para, meter jumping discontinuously
from a finite value to zero. ' The main result of
our present work is the determination that this
discontinuous behavior persists when an external
magnetic field B is applied perpendicularly to
the film, creating a resistive vortex state, ex-
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(2')

(3)p = (g —p)/4wATF'.

cept when B is very near the critical value II„.
We continue to use the simple time-dependent Ginzburg-Landau equations derived by Gor'kov and

Eliashberg' for a superconductor containing a high concentration of magnetic impurities sufficient to
reduce the critical temperature 7.", to a value much less than its original value T„:

y(8/et+ i2eg)a+ ( '(Ia I' —1)a+(V/i —2eA}'a=0,

j = o'( —Vg —BA/& A+ Re [4*(V/i2e —A) 6] /4m'. ',

As before y is the inverse of the diffusion con-
stant. 6 is the order parameter divided by its
value in the absence of fields. g, the electrochem-
ical potential divided by the electronic charge e,
is practically equal to the scalar potential y, be-
cause the Thomas-Fermi screening length XTF
is much less than the temperature-dependent co-
herence length $ and penetration depth X. o is
the normal-state conductivity. j and p are the
current and charge densities, and A is the vector
potential. (We set A =c=1.) The mean free path
for scattering without spin flip is assumed to be
much shorter than that with spin flip. Higher-
order nonlinear terms in these equations are of
order T,/T„and may be ignored.

To investigate the character of the phase tran-
sition in strong fields we first consider the field
region where the order parameter is small every-
where. Expect for corrections of order d/A the
magnetic field B may be taken to be uniform. It
is applied in the z direction perpendicular to the
film. If the vector potential is chosen as A=B(x
-v„t)e,+ v xe,y/4e and with ( = g, =vA, the-
ground-state solution to Eq. (1) linearized in 6 is
just the undistorted Abrikosov' solution translat-
ing with a velocity n:

A=+„C„exp[—eB(x —v„t)'+ ink(y —v, t)]. (4}

The value of v is obtained from E = —v xB, where
E means the spatial average of E(x, y). The sec-
ond-order phase boundary where A=0 is obtained
for fields satisfying

2eB = 2eH„—(yE/2B)',

where II„=(2e $') ' is the upper critical field
when E is small. '

The curve of B versus E given by Eq. (5) is il-
lustrated by the solid line in the inset of Fig. l.
The curve has a maximum value of E at B = &II„.
At first this result appears peculiar since the
current flowing in these fields is the normal val-
ue, vE, and one would expect the amount of cur-
rent which can be carried in the superconducting
state to increase monotonically as h is lowered
below H„, since the magnetic field tends to de-
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FIG. 1. The transport current j& of a thin-film su-
perconductor in the vortex state plotted as a function
of the electric field strength E along the film for dif-
ferent values of the magnetic field B (normalized to
H, 2) applied perpendicular to it. Inset: diagram of the
four phases obtained for different values of g and B.
8 is for stable superconductivity; U, unstable super-
conductivity; M, metastable normal state; and N,
stable normal state.

stroy superconductivity. The resolution of this
puzzle is found by investigating the stability of
this solution.

The current flowing in the film can be calculat-
ed from Eq. (2}. It consists of three parts. One
is the current circulating around the vortex cores
just as in the static case but now translating with
velocity v. This circulating current is calculated
from the last term in Eq. (2), using only the first
term in our expression for A. The remaining
terms are o'E(x, y) —Ia l'v xe,y/8@eh', whose
space average is the transport current j,. The
difference between these terms and j, is called
backflow.

By applying the continuity equation to j we can
find ( —(„and it has the same spatial depen-
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dence as found in Ref. 1, which is an odd function
with respect to any vortex core. Then using
Abrikosov's procedure, ' the average value of
IA I' for fields near the second-order phase
boundary is independent of P —g, and is found to
be

&I & I
'& = [1 (-r@'/2B)' B-IH„PP

Expressing v in terms of E and B we obtain

- [1 -(rÃ/2B)' B/H-. .]rF.
16weX'P B

The differential conductivity (Bj,/8E)~ ~ 0 at 6
= 0 only if B/H„~ g'/( $'+ P ~g') = 0.912, where g'
= 4m''o/r = $'/l2. Only for this high field can this
calculated curve of j, versus E at constant B be
continuous and monotonically increasing. If B
&0.912B„, equal values of j, can be found in a
certain range for different values of E but the
same B. We think the solution with the highest
conductivity, corresponding to the smallest E
for fixed j„ is the thermodynamically preferred
stable one. ' In the range where E is multivalued
the magnitude of j, is higher than that calculated
for a continuous transition to the normal state
from Eq. (5). When j, reaches the maximum val-
ue for any superconducting state, E must jump
discontinuously for the film to reach the normal
state.

This predicted behavior is illustrated in Fig. 1.
The solid line with a slope of 45' is the normal
state with constant conductivity o. The solid
lines leaving this curve are calculated from Eq.
(6) and represent superconducting states having
higher conductivities than the normal state. The
solid lines starting from the origin are calculated
from our previous theory of the linear flux-flow
conductivity, "with a smooth interpolation being
made between our high- and low-B values. The
short-dashed lines are extrapolations of these
two limiting curves. The long-dashed lines,
drawn from the maximum values of j, obtained
in a superconducting state across to the normal
state, represent the discontinuity predicted for
E when j, exceeds this peak value. The maxi-
mum value of j, for a superconducting state is
now observed to increase continuously as B is
lowered below H„ to the maximum value at B=0,
which is calculated rigorously for the state with
constant 4.

The four regions on these curves are indicated
in the phase diagram in the inset to Fig. 1. For
small E the state is stable and superconducting
if B&H„, or normal if B&H„. If H„&B

6=st ((r -vt)s/$),

B=H„(s' —
i
ai') = s'B,((r vt)s/g), —

j,= s'oEH„/B,

(7)

where s = [1 —(~re)'j'" = [1 —(2wvgE/B)2]'" is a
scaling factor for distances, and 4, and B, are
the static solutions. This solution indeed shows
the behavior indicated in Fig. 1. The only differ-
ence is that the maximum values of j, are all the

&0.912H„a continuous transition occurs at the
solid line. If B & 0.912H„, the current reaches
a peak for a stable superconducting state. The
locations of such peaks are indicated by a dashed
line. Beyond the value of E at this peak the su-
perconducting state is unstable, with a negative
differential conductivity. If this unstable curve
could be followed as E is increased through the
unstable superconducting region, the solid curve
would be reached, leading to the normal state.
However, we think the part of the normal-state
curve first reached is only metastable, since,
although the differential conductivity is positive,
the stable superconducting state can carry the
same current with a higher conductivity. If the
voltage along the film is held constant instead of
the current, the film can enter into an intermedi-
ate state with alternating stripes of the supercon-
ducting state at the maximum current and the
normal state at the same current, again increas-
ing the conductivity above the normal-state value.
Only when the electric field is increased so the
normal current exceeds the highest current pos,-
sible for any superconducting state, as indicated
by the second dashed line, is the normal state
absolutely stable.

Unfortunately, in the above discussion we have
not calculated the complete curves including the
regions near the current maxima. Therefore, it
is interesting to notice that we can calculate the
complete curves for a special case considered
previously in the linear-response region. ' For
this special case, a=A/)=1/v 2, and two slightly
unphysical assumptions are made. First, f is
set equal to A. = $/v 2, although its physical value
is $/v'12. This change does not alter the basic
structure of the equations or solutions. Secondly,
the boundary conditions on the fields at the sam-
ple surfaces are ignored. This has the effect,
among others, of replacing the denominator of
the slope of (I al') versus B near H„, which is
2v'P„, by (2/P —1)P„+1, i.e., replacing P~ by 1,
implying a 16%%ua error. Then using the method of
Ref. 2 we find the exact solution:



VOLUME 31,+UMBER 14 PHYSICAL REVIEW LETTERS I OCTOBER 1973

same [=(~)'"2emg'] for B - rII„, with continuous
transitions for larger B.

Although our calculation has been carried out
in a particularly simple reg. me, we expect that
the general behav or we predict should be ob-
served in more general cases. Thus, further ex-
perimental work characterizing resistive transi-
tions in thin-film superconductors should be in-
teresting, particularly observations of when con-
tinuous transitions to the normal state are ob-
tained as the electric field strength is increased,
and when discontinuous transitions occur. Some
curves showing discontinuous transitions in thin
films have been obtained by Ogushi, Takayama,
and Shibuya. ' Unfortunately, discontinuous tran-
sitions can also occur if the thermal conductivity
of the substrate is too poor to remove readily the
heat generated so that macroscopic hot normal
regions occur, which we have not considered.
Considerable care must be taken to separate the
two types of effects experimentally. The thin-
film regime is favorable since the total current
is reduced for a constant current density. The
required current density can be further reduced
by working close to the reduced T, , although
fluctuations become important and smear out the
transitions in a region too close to T, ."
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The acoustic attenuation for a one-band free-electron metal has been derived using a
generalized scattering function. If the latter has an appreciable backward lobe, the at-
tenuation exhibits an anomalous peak when the sound wavelength is comparable to the
electron mean free path. Similar effects might be observable in the alkalis as a result
of umklapp scattering processes. If so, further study could enhance our understanding
of the electron-phonon interaction in these metals.

The free-electron model of a metal has the
merit that Fermi-surface disturbances due to ap-
plied fields can be expressed in terms of spheri-
cal harmonics. It is mell known' that if the scat-
tering function W(k, k') depends only on the angle
0 between k and k', then each spherical harmonic
Y» relaxes towards zero with time constant ~~
given by

1/7 = J[t —P (cos&)]W(&)d0,

where P~ is a Legendre function, W(6) is the dif-
ferential scattering probability, and dO is the
element of solid angle. Associated with each T~
is an effective mean free path defined by

where ~, is the Fermi velocity of the electrons.
A special case is that of isotropic scattering,
where W(0) is independent of 6 so that all the T„


