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mor radius p being unknown. In the experimental
setup there is no independent method for measur-
ing the density, but the temperature measured
with an electrostatic probe compares favorably
with the value deduced from Fig. 4 (T-1800'K).

If these pseudocylindrical waves observed in
the laboratory were also detected in space, the
measurement of their wavelength at different fre-
quencies would help to reduce the uncertainty
which still remains in the evaluation of the tem-
perature of the ionospheric or magnetospheric
plasma.
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In a superfluid with an anisotropic quasiparticle energy, the normal-fluid density is a
diagonal tensor, The second and fourth sound velocities are distinctly anisotropic, so
that beat-pulse or fourth-sound studies with an applied magnetic field H may permit iden-
tification of the direction of the gap axis with respect to H. High-frequency sound veloci-
ties may display a weaker anisotropy.

I have studied the normal fluid density in an
anisotropic superfluid, using Bardeen's and Leg-
gett's' generalizations of Landau's arguments for
He II.' The results have been applied to second
sound, fourth sound, and the determination of
the energy gap near the transition temperature
from a knowledge of the normal-fluid density.
These questions are relevant because of the re-
cent flurry of activity, both experimental and
theoretical, prompted by the observations of
Qsheroff, Richardson, and Lee.'

It appears that, for T s3 mK, and under pres-
sure, liquid He' undergoes two phase transitions.
It has been suggested that these involve super-
Quid states. '6 The higher temperature phase,
because of its unusual NMR resonance shift, ' ap-
pears to be an anisotropic superfluid. The lower-
temperature phase shows no such unusual mag-
netic behavior, but viscosity studies' indicate
that it is in a superfluid state (presumably iso-
tropic). We will employ the identificationo of the
higher-temperature phase as an AM (Anderson-
Morel) state, "and the lower-temperature phase
as a BW (Balian-Werthamer) state. " Recent
heat-flow studies support a two-fluid model and
have determined a phase diagram. "

In the absence of superf low, the momentum

density of noninteracting fermion quasiparticles
at temperature T is given by'

3
= I' '2 ppf&P(E, -p. v.))
= —P~ K;p(paf&ax) v. +o(v.');

f(x) =(e"+ I) '.
Here V is the volume of the system, p is the mo-
mentum of a quasiparticle, E~ is its energy, P
= (K, T) ', and v„ is the normal-fluid velocity.
Using j = p„"& v„, one sees that

T."'=-P~ 'Z, p&f~a .

Since p„~'~ is real and symmetric, it can always
be diagonallzed. If the argument of f (i.e., PEp)
is isotropic, then p„' =p„' 1. However, if Ep s
anisotropic p„' need not be proportional to the
unit tensor 1. To be specific, we consider the
model""

E = Ie '+ h'sin'8 ]'~',

eq=—p /2m* —cF.

Here, m~ is the effective mass of the quasipar-
ticle, and eF is the Fermi energy, correspond-
ing to the Fermi momentum p, . 0~ is measured
with respect to the gap axis. In this case the non-
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p„, o~/p = (w'/2)(m*/m)(Pb, ) ',

p„, o
/p = (7m /40)(m "/m)(Pa)

(7)

(8)

In Eqs. (7) and (8) m is the bare particle mass.
Unfortunately, the AM state seems not to exist in
the temperature range for which Eqs. (7) and (8)
are valid. " These equations, nevertheless,
serve as an explicit example of the effects of
anisotropy on the normal fluid density. Note that,
for fermions with an isotropic gap A„corre-
sponding to the BW state, Landau and Lifshitz"
show that

p.'"/p = (»P&.)'~ exp( P&.)-
as Pb, ,-~. They neglect Fermi-liquid effects on
m~. This is valid at low temperatures, as Put-
terman has noted. " Therefore, m*/m = 1 in
Eqs. (7) and (8).

Near T„where b, - 0, the system becomes
isotropic. In order to evaluate p„, , as 6- 0, one
must incorporate quasiparticle interactions.
This has been done by Leggett for an isotropic
superfluid. ' He obtains

zero components of p„' are

p
~'~""=

p
'~"= —'PV-'Q-, p'sin'6, 6f/sx, (5)

p„~o~"= —pV 'g-p'cos'6~8f/&x. (6)

Note that more complicated models can yield
p„o ""tp„o~". Since sf/Bx is largest for small
sin6~, it is clear that p„' "&p„'"". Hereafter
we write p „," and p „, ' for p „'"and p „'"",
respectively.

The results of an evaluation of Eqs. (5) and (6),
using the spectrum given by Eq. (4), are of some
interest. At low temperatures, the integrals can
be made tractable upon making the approximation

l &p'+ ~'»n'6p~'~ = I&pl+ ~ l»n6pl.

This overestimates the argument of f by no more
than a factor of V 2 —1, at the worst. The re-
sults, although somewhat low, should be qualita-
tively correct. Note that ~- 2V(2vrh) 'fd'P in-
cludes the summation on spin.

%ith a bit of algebra and some tricks familar
from statistical mechanics, one can show that,
for ph»1,

~s straightforward to include some of the
effects of anisotropy. First, as Pb. -0, one finds
that

p„,"~/p = (rn +/m), [1 —0.4C(pa)'],

p„,"'/p=( */ ) l.l —o 8C(P&)'),

(10)

p„„/p =1-~„(m/m*) „
= 1 —A, ,(m/m*)~, (13)

where p„«0 /p= (m*/m), , (1 A, ,)—and Eqs. (10)
and (11) define A, , Since A, = 2A, for the model
described by Eq. (4), it is clear that a knowledge
of the gap axis is required to extract 4(T) near
T, from information about the normal-fluid den-
sity (such as obtained by the method described in
Ref. 15). One must know which normal-fluid den-
sity-- p„, or p„,—has been probed in the course
of any given experiment. Note that Eq. (13) is
dependent on a number of assumptions, so that
details of the analysis must be treated with cau-
tion.

The tensor nature of p„has consequences for
second sound in an anisotropic superfluid. As-
suming that j = 0 for second sound (so that p
= const and P = const) and taking the wave vector
to make an angle 8 with respect to the gap axis,
it is straightforward, using the standard equa-
tions of superfluid hydrodynamics, "to derive the
following expression for the second-sound veloc-
ity as a function of 8:

C,'(6) = C»' cos'6 + C„'sin'6,

where

C = f dx x ' d'f/d x' = (7/4p') ((3).
Here &(3)=Q„n ' is the Riemann & function. Note
that in Eqs. (10) and (11) we employ a generaliza-
tion of Putterman's phenomenological relation-
ship, "defining

(m*/m), , = 1+ (p„, ,/p)F, /3

= (m*/m)„+ (p„, , /p —1)E,/3. (12)

Here (m "/m)~ =1+ E,/3 is appropriate to the nor-
mal Fermi liquid.

Combining Eqs. (9)—(12) one finds that, near

p.'"/p
p 1+ (1 —m/m+)p„'"/p '

where

c„,'= (s'7'/c )p„,/p„, , (15)

where p„"~ is obtained from Eq. (3), using an

isotropic gap. Since p„~o~/p = m/m at T„ then

p„/p =1 at T, . Assuming that Eq. (9) holds for

Here S is the entropy per unit mass, {"„is the
specific heat per unit mass, and p„,=p —p„, ,
Near T„C,(6)- 0 for all 6, as with He II. Since
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C,'(6) = C„'cos'6 + C«' sin'8,

where

(16)

(17)

In deriving this expression, the thermal expan-
sion coefficient was assumed to be negligible.
We remark that pore geometry is rather complex,
so that the simple result given by Eqs, (16) and

(17) might be in some way averaged out by bound-
ary effects.

The tensor nature of p„also has implications
for high-frequency sound in the AM state. As
mentioned previously, Putterman's determina-
tion of the normal-fluid density from data" on
high-frequency sound in superfluid He' assumes
that p„ is a scalar. " Because p„tp„„certain of
the equations in that work are ambiguous. Re-
examination of the theory of propagation of high-
frequency sound in a superfluid, incorporating
the effects of anisotropy, therefore appears to

second-sound fluctuations are associated with the
backward ) shape of the g„curve in He II, one
is led to inquire about the detailed shape of the
C„curve in He'. The present data indicate that
C„ is discontinuous at T„"but future work
should examine the possibility that a small back-
ward A. shape is also present. We note that, due
to quasiparticle collisions with the lattice, sec-
ond sound does not propagate in superconductors. "
These materials exhibit a discontinuity, with no
indication of a backward X shape, in Q, at their
transition temperatures. The AM state, resem-
bling both He lI (superfluidity) and superconduc-
tors (pairing states with an energy gap), may ex-
hibit Q„characteristics of both.

Because of the low temperatures involved, im-
plying long collision times, it may be difficult to
study experimentally the hydrodynamic regime
(and, therefore, second sound) in liquid He' for
T s 3 mK. However, one should not rule out the
possibility that heat pulses, although not very
well defined in shape, might show anisotropic
propagation characteristics. With an externally
applied magnetic field along a known direction,
the anisotropy of such pulses would determine
the orientation of the gap axis with respect to the
magnetic field. '

A mode which may be more easily studied ex-
perimentally is fourth sound. If the normal fluid
is "clamped" by the presence of, e.g. , Vycor
glass in the sample cavity, so that V„=5, then
it is straightforward to show that

be appropriate.
It should be remarked that the experiments on

the high-frequency sound velocity have been per-
formed for only one direction of propagation. "
Studies of propagation in more than one direction
might yield an anisotropic high-frequency sound
velocity. This would be the case if the quasi-
particle interaction f(p, p') has a component de-
pending upon the quasiparticle momenta relative
to the gap axis n F.or example, a term in f(p, p')
proportional to cos(= (p+p') n/Ip+p'I would per-
mit such an anisotropy.

We conclude by noting that de Qennes has come
to similar conclusions about the anisotropy of
second and fourth sound, using a Ginzburg-Lan-
dau approach. " This work, which makes a spe-
cific assumption about the form of the condensa-
tion amplitude, in addition indicates that a rich
variety of new phenomena can be associated with
the AM state. Such behavior does not appear in
our simplified discussion because not all of the
hydrodynamic parameters associated with the
underlying microscopic structure have been in-
corporated into the theory. However, we believe
that the most important effects relevant to second
and fourth sound are included.

I would like to acknowledge conversations with
and comments by H. E. Hall, P. C. Hohenberg,
S. Putterman, and J. C. Wheatley.
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In. regard to second sound, we note that C2& (&7)

&& (it'/S)KsT/Po and C~, —36/Po as T —0, for the quasi-
particle spectrum given by Eq. (4). These expressions
are obtained by employing S~i' = (7x /60)(Ks/m)(KBT) /
& &F and C„~I'=3~ ", where the superscript qp denotes
the quasiparticle contribution to & and C„, In addition,
there are much smaller contributions SP" = (2& /15)(KB/

m)(K&T/pou)~, C„P"=SS&", and p„i'"/p =(4z~/16)(eF/Pou)
&& (KBT/Pou), arising from phonons (high-frequency or
zero sound). Here u is the zero-sound velocity and &P",
C„P", C„t', and p„p"/p are taken to be appropriate to
the noninteracting gas of phonons (as given, for ex-
ample, in Ref. 14). In the case of an isotropic gap (or
for an anisotropic gap which always remains finite) the
phonon contributions dominate as T —0, in which case
C& —u/Sit~. However, before the phonon regime is
reached, the quasiparticle regime gives, in the case of
an isotropic gap, C, [S(2w)i 2) ' 2KsT/P& as T 0.
fin deriving this expression, the relation S~& = (KsT/
E)C„"~ was employed, and C„"i' was taken from Hef. 14].
As one crosses from the quasiparticle regime (which

begins when ~~P =~P") to the phonon regime (which be-
gins when p„p =p„I' ), the second-sound velocity rises
dramatic ally.
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Level differences between two baths of liquid helium connected by an orifice are gen-
erated by a charged vortex-ping beam incident on a diaphragm containing the orifice.
The data are interpreted in light of phase slippage caused by vortex rings which overlap
the orifice. The effects of vortex-ring interactions are discussed.

Several years ago Richards and Anderson re-
ported an observation of the analog of the ac Jo-
sephson effect in superfluid helium. ' In this ex-
periment, which was subsequently repeated by
others, ' 4 a transducer was placed directly in
front of an orifice connecting two helium baths.
Activation of the transducer produced quantized
level differences between the surfaces of the two
baths. These quantized levels were accounted for
by slippage of the difference in the phases of the
complex order parameters describing the two
baths. It was assumed that vortex lines or rings
were created synchronously with the transducer
frequency. In steady state the phase slippage
caused by vortex motion cancels the phase slip-
page due to a chemical-potential difference be-
tween the two baths. This results in a level dif-
ference z given by

where yn is the helium atomic mass, g is the ac-
celeration due to gravity, 5 is Planck's constant,

and p is the rate at which vortices cross path
connecting the surfaces of the two baths. A de-
tailed discussion of this process has been given
by Anderson. '

An alternative derivation of Eq. (1) has been
given by Zimmermann. ' By considering the re-
active thrust of the vortex rings generated at an
orifice between two volumes of He II, he shows
that a level difference z is produced, given by
Eq. (1). Also, using the hydrodynamic equation
of motion for a superfluid in terms of a velocity
potential, Zimmermann has derived the same
equation. More recently, Huggins' has consid-
ered the role of vortex lines in energy dissipa-
tion in the flow of an ideal incompressible fluid,
and derived a timewise local relation between
chemical potentials and vortex motion, which
reduces to Eq. (1) in the steady state.

More recently, careful investigations by other
workers ' have shown that level differences gen-
erated in similar geometries in their laborato-
ries appear to result from acoustic resonances
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