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In summary, we have observed and explained
broad short-wave radiation under well-defined
experimental conditions. In our experiments,
self-phase modulation is negligible and self-fo-
cusing is absent. It is expected~nd prelimi-
nary experiments confirm —that the same physi-
cal mechanism contributes to superbroadening
also in other materials under more complex ex-
perimental conditions. '
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Preliminary calculations show that frequency conver-
sion, col. +co&+4 —3, contributes at high laser inten-
sities,
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By measuring the potential around a point-source antenna in a high-density magneto-
plasma at a frequency between the electron gyrofrequency and the plasma frequency, we
have detected an interference between a slow electrostatic wave and the cold plasma field.
A model of quasicylindrical electrostatic waves connected with the Bernstein mode is
proposed to explain the results.

We have measured the potential around a small
antenna embedded in a magnetoplasma. Accord-
ing to cold-plasma theory, the potential is maxi-
mum on a cone with its apex at the source and its
axis along the magnetic field when the frequency

is either in the range of the upper oblique reso-
nance (~ between the plasma frequency &u~, or
the gyrofrequency u, if co, & u~, and the upper-
hybrid frequency) or in the range of the lower
oblique resonances (v «u, or w~ if a,)&u~).
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These oblique resonances have been observed
in laboratory plasmas by Fisher and Gould' and
Gonfalone, ' and in space with a satellite experi-
ment by Mcpherson et al. ' These resonance
curves for the upper and the lower branches ob-
served in our laboratory are shown in Figs. 1(a)-
l(c). The fine structure, observed inside the
cone for the lower branch [Figs. 1(a) and 1(c)]
and outside the cone for the upper branch [Fig.
1(b) J has been interpreted' as interference be-
tween the fast electromagnetic wave and a slow
plasma wave.

In this paper we present and discuss a new

propagation mode, observed in a frequency range
where neither an electromagnetic wave nor an
oblique resonance exists. In this instance, the
fine structure appears almost everywhere around
the source [Fig. 1(d)] and is interpreted as inter-
ference between the static cold plasma field and
a quasicylindrical electrostatic wave which is
connected with the lowest-order Bernstein mode4

in perpendicular propagation.

+10db

A description of the experimental setup is given
in Ref. 2. The curves in Fig. 1 have been obtained
in the following manner. A repetitive voltage
pulse applied between an anode and a hot cathode
produces an afterglow plasma in a cylindrical
vessel, and a uniform magnetic field Bp is direct-
ed along its axis. The central conductor of a co-
axial cable exposed over a length of 5 mm is used
as the radiating part of the transmitting antenna,
and a similar antenna is used for the reception.
The two antennas are 10 cm apart and rotate
around an axis perpendicular to the magnetic
field. A network analyzer is then used to obtain
the envelope of the received signal as a function
of the angle P between the magnetic field and the
line joining the antennas.

To explain the reception of slow electrostatic
waves whose arrival directions are very oblique
with respect to the magnetic field and whose fre-
quency range is one forbidden to oblique reso-
nances, we have studied the solution of the dis-
persion equation in a warm magnetoplasma in ac-
cordance with classical theory (Boltzmann's and
Maxwell's equations), but with the electrostatic
approximation.

If an isotropic electron temperature is assumed
(T ~~=T„=T) and the effect of ions is neglected,
this equation is as follows':

1+ ((u~'/(u, ') [sin'(8)/A. ]

x[1+in,e Q 1„(A.)E,(n„)]=0, (1)

where

A. =0 ~'p' = (0 ~'/~, ')KT /m,

n„= [(&a+n~, )/k~~](m/2%i')"",

F,(7) =~~[Re(~~~)/IRe(lid) I]exp(- n„')+2iS(z),
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FIG. 1. (a)—(d) Potential of the reception antenna (log
scale) as a function of P (angle between antennas and

magnetic field). (e) Theoretical curve according to the
cylindrical- wave model.

S(z) =e ' J e' dt,

8 is the angle between k and B, (not to be con-
fused with P), p is the electron Larmor ra.dius,
and Re(k~1) is the real part of A~~.

Equation (1) has been solved numerically by
many authors, especially for 8 =v/2, in which
case the solution is simplified and gives the well-
known Bernstein modes. ' Generally Eq. (1) must
be solved in the complex eight-dimensional space
(&u, k), and this makes representation of solutions
(usually damped or unstable waves) very compli-
cated. Furthermore, Eq. (1), including multival-
ued functions, has an infinit number of solutions.
All the solutions which have been studied to date
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FIG. 2. (a) Projection in the real plane of index sur-
faces of the first branches of microscopic solutions for
&u/&u~ = 1.5 aud ~& /u~ = 8, Asterisks, full-adiabatic
solution. (b) Projection in the complex plane of the
same branches.

can be classified into three different groups:
(i) k real and &u complex; see, e.g. , Tataronis
and Crawford', (ii) k~~ and v real, ki complex
(e.g. , 8 complex); see Trulsen', (iii) &u real and
k complex (8 real); see Oya. '

Here the last representation is adopted because
it is well adapted to the experimental situation
where the potential around the point source has
to be computed. Because of the symmetry around
the magnetic field, the complex domain of k can
be reduced to kti and k~; and, letting 8 be real,
the components of k obey the following relation:

k~ Im(k|) Re(k|)
k,

~
Im(k 1~) Re(k „) /k „f

'

Consequently, the solutions of Eq. (1) can be
studied in three-dimensional space when co is
kept constant; the coordinates will then be Re(k~ p),
Im(k~p), and Re (k~~p). The different solutions
are presented in Figs. 2(a) and 2(b). Each branch
represents a, solution and is given an arbitrary

identification index whose sign is that of Im(ki p).
The fact that the two signs may coexist for waves
which are always subject to damping, in a Max-
wellian plasma, has been discussed by oya, ' and
he has indicated that the energy of the two types
of waves propagates in opposite directions. Fig-
ures 2(a) and 2(b) show that the dominant pole is
the branch (-1), which is the classical Bern-
stein's mode. All the other branches, represent-
ing strongly damped waves, are close to the two
bisectors and correspond to a damping of more
than 50 dB over a wavelength. The (-1) branch
is highly damped only after the kink, which ap-
pears in the real plane [Fig. 2(a)]. The interest-
ing part of this branch therefore lies between 9
=~/2 and the kink at 8-75'. In this part, be-
cause of the relatively small damping, progres-
sive waves can exist and, in particular, the con-
cepts of wave surface and direction of propaga-
tion can be used. The remarkable peculiarity of
this mode is that although the wave vector k de-
viates only by a few degrees from 8 =m/2, the di-
rection of propagation of energy shown by arrows
in Fig. 2(a) covers practically the whole space.
Besides, 1kl remains nearly constant (only a few
percent change), and the electrostatic field pro-
duced by a point source is in phase on quasicylin-
drical surfaces with the steady magnetic field
along the symmetry axis.

The dominant branches of the solutions for
three values of the ratio &u/e, are plotted in Fig.
3 in the same space as in Fig. 2, but with a per-
spective representation that offers three advan-
tages: (a) It gives a, total picture of the solutions
in the complex space; (b) the vertical view is the
usual diagram for the index surface in polar co-
ordinates; (c) the horizontal view gives the de-
gree of damping of the wave.

In the scope of the experiment described here,
the potential could be theoretically computed by
using Fourier- Laplace transforms. It would then
be necessary to integrate Poisson's equation in
the complex space around all the poles of Eq. (1),
but this calculus is not the purpose of the paper
and would constitute a further step. Neverthe-
less, it can be anticipated that the potential at a
given point will be mainly the sum of the two
main poles: the pole of the cold-plasma theory
(or vacuum pole k =0), which always appears in
the integration of Poisson's equation, and the
electrostatic-wave dominant pole in the range
where damping can be neglected. Because of the
principle of the stationary phase, this electro-
static pole will be practica. lly limited to the point
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FIG. B. Complex representation of dominant branches for different frequencies and for &u&'/&u, 2=5.

of the index surfaces lying between e =m/2 and

the kink where the energy propagates in the di-
rection of the receiving antenna. This prelimi-
nary analysis explains the observation of inter-
ferences, in practically the whole space, be-
tween the cold plasma field and the field of the
slow electrostatic wave whose wave vector, al-
most transverse, is very close to the solution of
the Bernstein mode for k~i=0.

Because of the actual shape of the index sur-
face, there should be one, two, or three inter-
fering electrostatic waves from the same domi-
nant branch with different wave vectors k and the
same energy direction, but because their wave-
lengths are close together, at short distances
from the source, their field interfering with the
cold plasma field should be coherent. Anticipat-
ing the exact result from the integration men-
tioned above, we shall consider as a first approx-
imation that the equipotential surfaces are cylin-
ders around Bp so that the interference pattern
around the transmitting antenna has the following
fol m:

y' =cos(k~d sinP +y, ),

where d is the distance between the antennas,
and y, the phase shrift between the electrostatic
wave and the cold static field at the source. Tak-
ing into account the amplitude variation of the ex-
perimental signal, the functiony' has been mul-
tiplied by an empirical factor sinP. This factor
allows a better comparison between the experi-
mental and the theoretical curves, but gives no
new information on the structure of the wave.
Figure 1(e) shows that the function

y =sinp cos(k~d sinp+y, )

agrees well with the experimental curve. This

agreement thus confirms the model of cylindrical
waves. As the distance d is known, k~ can be ac-
curately deduced. A series of curves similar to
tha. t in Fig. 1(d) has been obtained by changing
the emission frequency. The different wave num-
bers are plotted against frequency in Fig. 4. The
solid line is the theoretical curve deduced from
the dispersion equation of the Bernstein mode
which fits the experimental points best, the Lar-
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FIG, 4. Wave number k& as a function of frequency,
experimental points and theoretical curve. Lower
scale, Bernstein dispersion curve for &u& /~~ =5; the
comparison of the two scales gives T =1800 K.
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mor radius p being unknown. In the experimental
setup there is no independent method for measur-
ing the density, but the temperature measured
with an electrostatic probe compares favorably
with the value deduced from Fig. 4 (T-1800'K).

If these pseudocylindrical waves observed in
the laboratory were also detected in space, the
measurement of their wavelength at different fre-
quencies would help to reduce the uncertainty
which still remains in the evaluation of the tem-
perature of the ionospheric or magnetospheric
plasma.
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In a superfluid with an anisotropic quasiparticle energy, the normal-fluid density is a
diagonal tensor, The second and fourth sound velocities are distinctly anisotropic, so
that beat-pulse or fourth-sound studies with an applied magnetic field H may permit iden-
tification of the direction of the gap axis with respect to H. High-frequency sound veloci-
ties may display a weaker anisotropy.

I have studied the normal fluid density in an
anisotropic superfluid, using Bardeen's and Leg-
gett's' generalizations of Landau's arguments for
He II.' The results have been applied to second
sound, fourth sound, and the determination of
the energy gap near the transition temperature
from a knowledge of the normal-fluid density.
These questions are relevant because of the re-
cent flurry of activity, both experimental and
theoretical, prompted by the observations of
Qsheroff, Richardson, and Lee.'

It appears that, for T s3 mK, and under pres-
sure, liquid He' undergoes two phase transitions.
It has been suggested that these involve super-
Quid states. '6 The higher temperature phase,
because of its unusual NMR resonance shift, ' ap-
pears to be an anisotropic superfluid. The lower-
temperature phase shows no such unusual mag-
netic behavior, but viscosity studies' indicate
that it is in a superfluid state (presumably iso-
tropic). We will employ the identificationo of the
higher-temperature phase as an AM (Anderson-
Morel) state, "and the lower-temperature phase
as a BW (Balian-Werthamer) state. " Recent
heat-flow studies support a two-fluid model and
have determined a phase diagram. "

In the absence of superf low, the momentum

density of noninteracting fermion quasiparticles
at temperature T is given by'

3
= I' '2 ppf&P(E, -p. v.))
= —P~ K;p(paf&ax) v. +o(v.');

f(x) =(e"+ I) '.
Here V is the volume of the system, p is the mo-
mentum of a quasiparticle, E~ is its energy, P
= (K, T) ', and v„ is the normal-fluid velocity.
Using j = p„"& v„, one sees that

T."'=-P~ 'Z, p&f~a .

Since p„~'~ is real and symmetric, it can always
be diagonallzed. If the argument of f (i.e., PEp)
is isotropic, then p„' =p„' 1. However, if Ep s
anisotropic p„' need not be proportional to the
unit tensor 1. To be specific, we consider the
model""

E = Ie '+ h'sin'8 ]'~',

eq=—p /2m* —cF.

Here, m~ is the effective mass of the quasipar-
ticle, and eF is the Fermi energy, correspond-
ing to the Fermi momentum p, . 0~ is measured
with respect to the gap axis. In this case the non-


