
VOLUME g 1, NUMBER 2 PHYSICAL RKVIKW LKTTKRS 9 JUr.v 1973

~ D. K. Bhadra, Phys. Fluids 14, 977 (1971). For a
collisional mode see, for example, Ref. 5.

i28 J. Hastie and J B Taylo r, Plasma Phys, 13, 265
(1971).

The observed increase in ~I~ accompanied by mode
transitions is also qualitatively consistent with those

expected from the dispersion curve.
~ J, D. Jukes, Phys. Fluids 7, 3468 (1964); P. H. Huth-

erford and E. A. Frieman, Phys. Fluids 10, 1007
(1967); L, D. Pearlstein and H. L. Berk, Phys. Hev.
Lett. 28, 220 (1969); M. Mishin, Zh. Eksp. Teor. Fiz.
59, 2252 (1970) ISov. Phys. JETP 32, 1218 (1971)].

Influence of Ion-Resonance Broadening on the Anomalous Heating
and Momentum Transfer in a Current-Carrying Plasma

M. Z. Capon1 and R. C. Davidson
Center for Theoretical I'kysics, Department of Physics and Astronomy, University of Maryland,

Col/eye Park, Maryland Z074Z
(Received 5 February 1973; revised manuscript received 21 May 1973)

The anomalous heating and momentum transfer in a current-carrying plasma are cal™.
culated including the effects of ion resonance broadening on the nonlinear development of
the ion acoustic instability. In the constant-current regime, the anomalous resistivity
is found to be of order (T;/T, )z/z~~, ', which compares favorably with the measured re-
sistivity in several experiments.

The ion acoustic instability has been extensive-
ly investigated in the literature' "and a variety
of nonlinear mechanisms have been proposed for
its stabilization. ' " Nonlinear Landau damping
by the ions, ' although the most popular mecha-
nism invoked for saturation of the wave ampli-
tudes, lacks experimental credibility as the dom-
inant nonlinear process. For example, experi-
mental values of anomalous resistivity associat-
ed with the ion acoustic instability'' are typical-
ly 1 or 2 orders of magnitude lowe~ than the Sag-
deev resistivity, '"

ties
= 4m(T, /T;)(m, V~'/T, )'"~„',

which is calculated under the assumption that
nonlinear ion Landau damping is the dominant
saturation mechanism. In this Letter, the anoma-
lous heating and momentum transfer in a current-
carrying plasma are calculated including the ef-
fects of ion resonance bxoadening78 on the non-
linear development of the ion acoustic instability.
%e consider a uniform, collisionless, unmag-
netized plasma consisting of hot electrons drift-
ing with velocity V„=V„k, relative to a cold-ion
background (T; «T, ). The electron current is
sustained by a sveak dc electric field EO=SOD„
which results in the generation of ion acoustic
turbulence in the system. After an initial stage
of linear growth, the field level saturates as a
result of ion resonance broadening, and the sys-
tem enters a constant-current regime which lasts
for several hundred v~, ~. The anomalous resis-
tivity in the constant-current regime is found to
be of order (T,/T, )"'(u„' [see Zq. (7)], which

is considerably smaller than the Sagdeev resis-
tivity g~ and compares favorably with the mea-
sured resistivity in several lab experiments. '3
A detailed study'" of the wave kinetic equation
shows that the nonlinear damping produced by
ion resonance broadening dominates nonlinear
ion Landau damping for temperature ratios T,/T,
~ 0.03.

The turbulence model adopted in the present
analysis consists of the quasilinear kinetic equa-
tions generalized to include the effects of ion res-
onance broadening. '" For simplicity, nonlinear
Landau damping and other nonlinear processes
are consistently neglected. The spatially aver-
aged jth component distribution function f, (v, t)
evolves according to

Bf eE, Bf B =( Bf l

D, = (8&p /m, ')jd'Iz kky. '( —k v) 'yg„-

in the nonresonant (~ 4 k v) region of velocity
space,

D, = (8zie, '/m, ')jd'u kke 'll, 8„-=-D,

in the resonant (&u = k v) region of velocity space,

A, = Re1 dt exp[z (k v -~)t -—'k D " k t']

A;=ized(~ —k v), j=e.
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The spectral energy density associated with the
electric field fluctuations, 81,(t) = ( l&Eq(t) l')/6m,
satifies BSp/&t=2y8„-, where

y=Py, =P 2
—", d'vR/k ~—

+ Jd~kSp//PX ,D

K, =n, m, V„'td't v, (k)(~. /k V„)

where

—(d2u h ~(1+I/e2X~2),

2(d &e kz (d
v, (k)-=. , ",—;1--—

k' XD k k'Vd

(X~)1/2 D g k

Plere (d~PS, T, ' (4)

and v, = f d 0 v, (k) is the effective collision fre-
quency for momentum transfer due to the insta-
bility. In Eqs. (1)-(4), —e is the electron charge,

is the growth rate, &

' = ~„'[I+ (O'A. D') 'j ' is the
oscillation frequency squared, A. D is the electron
Debye length, &u„= (41/n;e, 2/m, )'" is the jth corn
ponent plasma frequency, and the normalization
of f, is f d'v f, =1. .To a first approximation, we
assume that the spatially averaged distribution
functions maintain a Maxwellian structure,

f, (v, t) = (m, /2mT, )2"exp[- m;(v —V;)'/2T;],

where V, (t) = V, (t)e, and T/(t) vary adiabatically
with time in response to the fields. Recent com-
puter simulation experiments by Orens"" indi-
cate that this is a good approximation for about
2000~~, provided the applied electric field is
sufficiently weak that elEol/m, &'~, (T,/m, )1/2 &10 2.

Correct to O(m, /m;), we approximate V, = 0 and

V, =V, -V~=V, . Assuming T, »T; and T;/m&
«T, /m, , the phase velocities of the unstable ion
acoustic waves satisfy T;/m; «&u2/k, 2 & V„'.

To determine the bulk response of the system
to the unstable field fluctuations we compute the
velocity moments of the kinetic equation for f,
corresponding to the mean velocity, V; = Jd21/1/ j,,
and kinetic energy density relative to the mean,
K; = 'n, rn; Id'v (v—-V/) f& . After some straight-
forward algebra that makes use of the approxima-
tions enumerated in the previous paragraph, we
find

V„=—v, V, —(e/m, )Eo,

K =n m V„'Jd'/'2 v (k)(1 —&u/k V„)

3 2
7I Q)

y J" 2 2Q2
Bfvk —'&(~ —k v), j=i, e,Bv

are the linear growth (damping) rates associated
with component j;

&y;" = ((u2/202) jd2v 8;k ef, fd v—

is the nonlinear damping produced by ion reso-
nance broadening.

If the system achieves a quasisteady state
characterized by V„=0= 8„, it follows from Eqs.
(1) and (5) that V, =- eE,/m. v, , and y,~+y; +b.y;"
=0. The balance between linea, r growth and non-
linear damping determines the level of field fluc-
tuations at saturation. Approximating R; = 1//24;
for Ik v-&el &a.;=(k D;" k/3)'", and R;=0
otherwise, and making order-of-magnitude esti-
mates of the various terms in y, +y, +~y; = 0,
it can be shown' that the approximate field level
at saturation is

(6)

In Eq. (6), hz ——fd~k $q is the total field energy
density, T;/T, is the ratio of ion to electron tem-
perature at saturation, ~k is the characteristic
width of the excited spectrum in k space, and k0
is the wave number characteristic of the micro-
turbulence. Making use of Eqs. (4), (6), and T,
= Jd2i'2 v, (k), the effective anomalous resistivity
under quasisteady-state conditions is 1i,„=E,/
(-n, e V~) = 42 v, /& /„' for V„=0 = h „. Solving for
'g s„gLve8

(2 )1/2 T 2/2 '"

6 1
y

0

+&e — e - — k0 ~d—

X (~72)A, u,'/, ',

where &u, = ~(ko). As an example, if T;/T, =~»,
C,/V„= so~; A D/V~ = —,, /'20 A D

-—2, and (4k) A D
——1,

then q,„=0.leo„'.
To obtain a detailed description of the time

development of the system, Eqs. (1)-(5) have

s the 616c tron I11ass ~ n y coIlst is the ambient
density for component j, and K, =Sn,T,./2 since
f; is approximated by a Maxwellian. Equations
(1) through (3) describe the time rate of change
of the average plasma properties. To complete
the description, Eqs. (1)-(4) must be supplement-
ed by the kinetic equation for the waves, which
can be expressed in the form

&p=2(y.'+y +»;"')&k (5)

In Eq. (5),
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FIG. 1. Time history of (a) V„/C»= Vz(T,O/~;) "t,
(b) Sp/n T O=fd~kS), /n T,0, (c) T /T», snd (d) Tt/T;0,
predicted by Eqs. (1)-(5) for a hydrogen plasma. The
initial conditions are -eEO[m, ~&,(T,O/m, )

' ] ' = 5
x 10 ', T,,/T„=+, g~g =0)/n, T,0=7 x10, snd V~(t

=0)(T80/m~) =0.0375, where T;0:—T;(t =0) and T~o
=- v, (t =0).

been integrated numerically. For simplicity, a
one-dimensional k spectrum is considered with
k = k0, . Figure I shows the results obtained for
a typical set of initial plasma parameters, and

E,(0. In Fig. 1, seven modes ()'t values) have
been included in the numerical analysis. Since
Ep&0, there is an initial increase in V~ in re-
sponse to the applied field Ep Once the ion acous-
tic instability is operative, there is an increase
in the level of field fluctuations [Eq. (5)J and a
corresponding heating of the electrons and ions
[Eqs. (2) and (3)]. This results in a resistance
to the flow of electrons [a decrease in V„ac-
cording to Eq. (1)], and a simultaneous decrease
in the total growth rate [Eq. (5)]. The system
approaches a quasi steady state characterized by
V~= 0= 8„. For —eEc[m, (T,O/m, ) "&u~,]

' (10
V„attains a steady value typically in the range
2.5C, to 5C, , and the current remains constant
for several hundred cv„'.

We note from Fig. I that the continued ion and
electron heating eventually results in a damping
of the waves [since y, +y; +b,y;" turns nega-
tive in Eq. (5)]. Once the fluctuation level is
sufficiently low, the electrons again accelerate

in response to the applied field Ec [Eq. (1)], and
V„begins to increase at ( ~.t = 2ipp in Fig. 1.
By this time, however, distortions in the distri-
bution due to runaway electrons cannot be neglect-
ed,"and Eqs. (1)-(4) no longer constitute a valid
description. However, since energy is continual-
ly supplied to the system by the applied field Ep,
it is indeed plausible that V„will continue to in-
crease to a sufficiently large value that the ion
acoustic instability is triggered once again.

The present theory, which utilizes ion reso-
nance broadening as the quasisaturation mecha-
nism, predicts the existence of a quasisteady
state in which the current remains constant for
several hundred ( „'and the corresponding
anomalous resistivity is given by Eq. (7). The
measured value of anomalous resistivity in re-
cent computer simulation experiments by Orens"
is in good agreement with the theoretical expres-
sion for g,„. Furthermore, the qualitative fea-
tures of the time development of V~, h~, T„and
T; are similar to those shown in Fig. 1. As an
example, for the initial conditions T;c/T„=»c
and -eE,[m, &u~, (T„/m, )'"] '= 5x10 ', the simula-
tion experiments give T;/T, =~», V,/C, = 2.5,
and (au)AD= 1 at quasisaturation. The measured
value of t),„ is 2x10 'o ~, ', whereas Eq. (7)
gives Q 3 x 10 p The computer sj.mula-
tion experiments also show the development of
a nonstationary vortex structure in the ion phase
space, which is indicative that the statistical
trapping of ions plays an important role during
the nonlinear stage of the ion acoustic instability.
In Table I, the measured values of anomalous
resistivity in several lab experiments" are corn-
pared with the analytical expression for g,„giv-
en in Eq. (7) and with the Sagdeev resistivity
gs.'" In all cases we have taken (b.k))I.D=1, ko'
xzD'= —,', and ~,/k, V„=C,/V„; T,/T; and V„/C,
are the measured values at saturation (or quasi-
saturation) of the ion acoustic instability. Given
the uncertainty in the choice of (b.k)A. n and the
fact that T, /T; is not accurately known in some
of the experiments, we feel that there is rela-
tively good agreement (within a factor of 5) be-
tween Eq. (7) and the experimental values of r),„,
and that this is indicative that ion resonance
broadening is indeed a viable nonlinear mecha-
nism for quasisaturation of the ion acoustic in-
stability. The conditions under which ion reso-
nance broadening dominates other nonlinear
mechanism, for the saturation of the ion acous-
tic instability will be discussed in a subsequent
article" in which the present analysis is extended
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Comparison betwen Eq. (7) and measured values of anomalous resistivity.

Experiment m, /m,
Q a~ COp "ag ~pg

(Experimental) [Eq. (7)j
'g S(dp

(Sagdeeva ")

Wharton et al.c

Mah et al.d

Hirose et al.
Orens"

(Computer
simulation)

5
15
258

20
10
19

2.5

1837
40x 1837
40x 1837

64

0.6
0.6
0.02

0.02

0.6
0.1
0.05

0.03

3
8

45

Ref, 7.
bRef. 14.
cRef 1

dRef. 2.
eRef. 17.
'Ref. 3.

gRef. 18.
"Ref. 15.

to include two ion components and a uniform ex-
ternal magnetic field Bo parallel to E,.
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The simulation experiments referred to here are
carried out for 80 = 0 and a two-dimensional k spec-
trum. Orens (Ref. 15) finds that fi(v, t) maintains a
Maxwellian structure adiabatically in time during both
the linear growth and nonlinear saturation phase of the
instability, before runaway effects become significant.
A detailed study (Ref. 13) of the kinetic equations shows
that the neglect of non-Maxwellian distortions infi(v, &)

for times of order 2000+~ is especially valid in
three (or two) dimensions. Depending on the direction
of v relative to the excited k values, the resonant re-
gion (k v = tv) of velocity space can extend to infinity,
and dramatic changes in'(v, t) (as manifest, for exam-
ple, by plateau formation over extensive regions of
velocity space) do not occur on the time scales consi-
dered here.

~~This value of Te /T; is taken from Fig. 2(c) of Ref. 2

at t ~1.7 p, sec.
The value of T; was not measured in this experiment.

From the observed cutoff frequency and measured val-
ue of V& (T, /m, } ~/2, it was concluded (Ref. 3) on the
basis of quasilinear theory that T;/T~ = 2 at saturation
(y ~+y;~ ~0). However, if ion resonance broadening
is included as a stabilization mechanism (y~ +y;
+Ey&s+ ~ 0), saturation occurs at a louver value of T;/

(= k)


