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A renormalizable field theory is said to be asymptotically free if the origin of coupling-
constant space is an ultraviolet-stable fixed point in the sense of Wilson. Asymptotically
free theories are of great interest because they have almost-canonical light-cone singu-
larities, and thus predict phenomena very close to Bjorken scaling. All known examples
of asymptotically free theories involve non-Abelian gauge fields. We show that this is not
coincidence: No renormalizable field theory without non-Abelian gauge fields can be as-
ymptotically free.

In recent years, the renormalization group of
Gell-Mann and Low' has played a central part in
the investigation of some important asymptotic
properties of renormalizable field theories. ' In
particular, the renormalization group is the key
to the asymptotic behavior of the coefficient func-
tions in Wilson's operator-product expansion, ~

and the related behavior of electroproduction
structure functions in the Bjorken region. 4

To establish notation, and as an aid to the read-
er of imperfect memory, let us briefly summa-
rize how this machinery works'. In a general re-
normalizable field theory, let us denote the di-
mensionless renormalized coupling constants' by
g", and let us define these objects, not as the
values of appropriate Green's functions on the
mass shell, but as those of the same Green's
functions at some point in Euclidean momentum
space, characterized by some mass M, large
compared to all of the renormalized masses (and
dimensionful coupling constants') in the theory.
Then t;he relevant asymptotic properties of the
theory are unaffected if we let all the masses
(and dimensionful coupling constants) go to zero.
Further, in this limit, it is possible to derive
differential equations for the changes in the g's
as we change the renormalization mass M. These
are the differential equations of the renormaliza-
tion group; they are of the form

Mdg /dM=P (g),

where the P's are, in general, functions of all
the g's. There exists an algorithm for comput-
ing the P's in power series in the g's. If Eqs. (I)
admit a family of solutions such that

lim g"(M) =g
N~~

we say that g„ is an ultraviolet-stable fixed point.
The asymptotic behavior of any theory that lies
on a solution of the form (2) is essentially gov-

erned by that of the theory at the fixed point. Of
special interest is the case where the origin is
an ultraviolet-stable fixed point, that is to say,
where there exists a family of solutions to the
Eqs. (I) such that

lim g (M) =0.

In this case, we say the theory is asymptotically
free. The coefficient functions in the operator-
product expansion display canonical scaling be-
havior, except for occasional logarithmic factors,
which are readily computable in closed form for
any given theory. Because of the strong experi-
mental evidence for canonical light-cone behav-
ior, asymptotic freedom is obviously a highly
desirable feature for any field theory of the strong
interactions, In fact, it has recently been shown,
for a wide class of renormalizable field theories,
that Bjorken scaling implies asymptotic freedom. '
[To be honest, we must admit that these theories
are interesting for other reasons: To investigate
asymptotic freedom, it sufficies to study the be-
havior of the P functions near the origin, i.e., in
lowest-order perturbation theory (one-loop ap-
proximation). Thus we have only a problem in

coupled nonlinear differential equations, not one
in strong-interaction dynamics to boot. ]

Until recently, there were no known examples
of asymptotically free renormalizable field the-
ories. Now there are many. ' All the known ex-
amples involve non-Abelian gauge fields (Yang-
Mills fields). The purpose of this note is to show
that this is not an accident: Ã0 renormalizable
field theory without non-Abelian gauge fields can
be asymptotically free.

Thus, if we accept Bjorken scaling as evidence
for asymptotic freedom, then any acceptable field
theory of the strong interactions must involve
non-Abelian gauge fields. " The strongest inter-
actions (like the weak, though for completely dif-
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ferent reasons) must be described by a spontane-
ously broken gauge field theory. This is a com-
plete reversal of the accepted wisdom of only a
few years ago: Then, we believed that in the (Eu-
clidean) asymptotic region, the weak interactions
became strong; now, we believe that the strong
interactions become weak.

This completes the sermon. We now turn to
the proof of the stated result. We begin by reca-
pitulating several partial versions of the result
already present in the literature.

(1) If the theory contains Abelian Gauge fields,
the wave-function and charge renormalizations
of the gauge field only involve the gauge-f ield
coupling, in the one-loop approximation. Thus
the renormalization-group equation for the gauge-
field coupling is essentially the same as that in
quantum electrodynamics, which has been known
since the first papers on the renormalization
group' not to be asymptotically free. Thus the
theory can contain no Abelian gauge fields.

(2) If we assume the theory contains only spin-
less mesons, it is easy to show it cannot be
asymptotically free. " Let us assume the quartic
form ~„.»y,.y&y„y, is positive, where the ~'s are
the renormalized coupling constants, and the sum
on repeated indices is implied. In particular,
this implies that ~yyyy is positive. However, it is
easy to compute that

Thus the theory cannot be asymptotically free.
If we assume the quartic form goes to zero (as-
ymptotic freedom) as M increases, but is not
positive, ' then an application of the methods of
Coleman and Weinberg'~ shows directly that the
energy of the system cannot be bounded below,
and the theory is nonsense.

(3) Thus we are left with theories of spin-&
fermions and spinless mesons. In this case there
exists a partial result due to Zee." Zee shows
that the theory cannot be asymptotically free if
one assumes that (a) the fermions transform ac-
cording to a single irreducible representation of
some simple I,ie group, (b) the mesons transform
according to the adjoint representation of the
same group, and (c) the group allows only one
invariant Yukawa coupling. [Thus, for SU(3), oc-
tet mesons coupled to octet fermions obey the
first two conditions but violate the third. ] Our
result can thus be thought of as an extension of
Zee's to a much more general case.

We now analyze this case in more detail. In
the one-loop approximation, the quartic meson

couplings do not contribute to any wave-function
renormalizations, nor to the charge renormaliza-'
tion for the Yukawa coupling. Thus, at least to
begin with, we may study the renormalization-
group equations for the Yukawa couplings alone. "
For orientation, we begin with a single scalar
meson coupled to a single fermion: g'=ggy. A
simple computation shows that Eq. (1) takes the
form

Md@/dM= (g'/16w')(2+ —,'+ —,'+2). (5)

(b)

/'

I

(c)

FIG. 1. The four one-loop graphs that contribute to
the P functions for Yukawa couplings. Directed lines,
fermions; dashed lines, spinless mesons.

The four terms on the right-hand side of this
equation represent the effects of meson wave-
function renormalization [Fig. 1(a)], wave-func-
tion renormalization of each of the two nucleons
[Figs. 1(b) and 1(c)], and charge renormalization
[Fig. 1(d)]." It follows directly from Eq. (5) that

Mdg'/dM= 5g'/av2-O

Hence, the theory is not asymptotically free.
We now turn to the theory of an arbitrary num-

ber of mesons and fermions, with the most gen-
eral (not necessarily parity conserving) Yukawa
coupling. I,et the interaction be 2' = g'(A„'
+iB„'y,)P'y', where we have taken the meson
fields to be real and the sum over repeated indic-
es is implied. (We use a Hermitian y, .) Reality
of the Lagrangian implies that the A's and B's are
Hermitian matrices. It is convenient to consider
these couplings as forming a set of square ma-
trices g':

gab A ah + ~Bah

We can now read off from Fig. 1 the generaliza-
tion of Eq. (5) [note that since y, anticommutes
with the propagator of a massless Fermi field,
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pushing a Yukawa coupling through a propagator in Fig. 1 has the effect of turning g into g ]:
16~'M dg'/dM =(Trg'g' )g'+(Trg' g )g'+ zg'g'"g'+ zg'g' g +2g"g' g'.

Whence, in analogy to Eq. (6),

8n'M(d/dM)(Trg' g )

= Trg'g't Trg'tg'+ Trg'g't Trg'g't+ z Trg'g'tg'g't+-, ' Trg'tg'g'tg'+2Trg'g'tg'g't.

(8)

Note that the differentiated object in this equation is a positive quantity that must go to zero as M goes
to infinity, if the theory is to be asymptotically free. Now the central pair of terms are obviously posi-
tive, being the trace of the square of a Hermitian matrix. Also, the first term is greater than the sec-
ond, for

Trg'g' t T rg'gt t = Re(Trg'g't Trg'g't) ( (Trg'g't) (Trg'g' t) *.

Finally,

+2Trgg' g g =(g' ~~g a +g~ g ~)(gng'~c +ga Ac

Thus,

(10)

M(d/dM)(Trg'tg') ) 0, (12)
Note that M is a positive-definite matrix. This
addition produces an addition to Eq. (9):

M" = A. '""A.'""/48 '. (14)
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FIG. 2. The only two-loop graph that can possibly
compete with the graphs of Fig. 1.

and the theory cannot be asymptotically free.
This completes the analysis in the one-loop ap-

proximation. Are there any graphs with more
loops that can change our conclusions'P It is easy
to see that the only graph that can possibly com-
pete with those we have considered is that shown
in Fig. 2. This graph is of order gA. ', and could
compete with the 0(g') graphs of Fig. 1, if A.

were on the order of g. All other graphs, though,
are either proportional to g', times powers of
coupling constants, or proportional to gA. ', times
powers of coupling constants, and therefore can
be safely neglected in the region of small coupling
constants.

It is easy to compute the effects of this graph.
It adds an extra term to the right-hand side of
Eq. (8):

16& M dg'/dM = ~ ~ ~ +M "g',

where

8~'M(d/dM)(Trg'tg') = ~ ~ ~ +M" Trg'tg'. (15)

However, this is positive, as is seen by going to
the frame in which M is diagonal; thus, it does
not change the inequality (12). This completes
the proof.
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In finite theories of quantum electrodynamics, positivity implies d &3 for the dimension
d of an axial-vector current J5& with nonzero anomaly. This result is not contradicted in
the Johnson-Baker-Willey and Adler models: Arguments for the neglect of internal fer-
mion creation and annihilation fail for J5& amplitudes because illegal skeleton expansions
are involved.

Attemps" to include an axial-vector current
J» in finite theories' ' of quantum electrodynam-
ics (QED) have produced unexpected difficulties.
In particular, the annihilation condition'

Z„(0)I 0) =0 (fermion mass m=0)

for the electromagnetic current J& seems to im-
ply the result"

(0 I
JaJ sJ, r I 0) = 0 (m = 0) . (2)

x(0I J.(&)Js(0)J,(y) I 0) = I (m g0) (3)

(the symbol Z, represents a soft pseudoscalar
operator, and [E E] denotes the renormalized

However, in any theory summed over gauge-in-
variant subsets of diagrams (with m+0), the cor-
responding anomalous constant 8 is not renormal-
ized'.

gauge-invariant normal-product operator con-
structed from the electromagnetic field-strength
tensor E„s and its dual E„s). According to Wil-
son's analysis' of the anomaly, Eq. (2) implies
S = 0,' a result which is not compatible with (3).

We have already given an extensive discussion
of this problem and related difficulties elsewhere. "
This abbreviated version, unencumbered with
side issues, serves to emphasize the main con-
clusions:

(a) Positivity and Eq. (3) imply that d, the di-
mension of J5„, is greater than 3; in that case,
Eqs. (I) and (3) are compatible, and Eq. (2) is
incorrect.

(b) In the Johnson-Baker-Willey4 (JBW) and
Adler' models, the argument that internal fer-
mion creation and annihilation may be asymp-
totically neglected cannot be applied to J» ampli-
tudes because it involves the use of an illegal
skeleton expansion.

Instead of setting m equal to zero, we consider
products of smeared gauge-invariant operators


