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fusion in terms of microscopic concepts: The
difference between D, and D, is effectively a
measure of the gradient of v(€) with respect to
energy. For example, when v(€) is an increasing
function of energy, collisions occur more fre-
quently as the energy of the carriers is increased,
and diffusion parallel to the electric field is re-
duced in comparison with the perpendicular di-
rection, Dy <D, (equality holds at zero field).
For the deformation potential, !=const and v
o« €2 and we find from (17), (18), (23), and (24)
that D /D, =0.5 (high-field limit) in good agree-
ment with the more exact result of Parker and
Lowke.®

It is clear that we cannot neglect the depen-
dence of f°) upon V# (as done in Ref. 3), for this
implies from (14) and (16) that {€,) =0, in contra-
diction to (20). [If (¢,) were set equal to zero,
then we would find Dy =D, as given by Eq. (23b).]

The method of moment equations can be extend-
ed to the case where optical-phonon scattering
is of importance. Here, however, difficulties
arise because energy is not equipartitioned and
the pressure in (10) becomes a tensor with diag-
onal entries nxT, ,. The single equation (11) for
energy has to be replaced by two equations, for
Ty, and T,. Because of these increasing complex-
ities, it may not be any more advantageous to
pursue this approach than to solve the Boltzmann
equation directly. In adopting the latter course,

a method recently described by Kumar and Rob-
son’ appropriate to ions in a neutral gas may be
useful in providing a guide to tackling the prob-
lem for semiconductors.
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It is shown that anomalous dispersion of quasiparticles leads to nonpropagating states.
Therefore regions of anomalous dispersion define a sort of “mobility gap.” Using the
coherent-potential approximation, we calculate the conditions for obtaining such a mobil-
ity gap in a disordered binary alloy. Just outside the mobility edges located at w, the

mobility vanishes as lw-w_l.

We consider the question of the existence of a “mobility gap,” of whether in a disordered medium
there is a range of allowed energy levels which are all nonpropagating states. This concept, first
conjectured by Mott,' Cohen, Fritzsche, and Ovshinsky,? and others, is of great physical interest in
the electronic band structure of liquids, amorphous semiconductors, and disordered alloys. It has
been shown that in the disordered linear chain all states are localized,® so that the “mobility gap”
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could well include all allowed energy levels. In the case of the three-dimensional disordered medium
one needs a specific criterion for the existence and location of such a gap. Criteria based on probabil-
istic concepts have been put forward.*

It is the purpose of the present work to present a different sort of criterion, based on the dispersion
of quasiparticles. We shall show that if there is a region of anomalous dispersion, ordinary wave
packets made with states in this region cannot propagate, and we shall therefore identify this region
of energy states as constituting a mobility gap. We shall then use the well-known coherent-potential
approximation (CPA)® to obtain the quasiparticle energies in a special case, as an example to demon-
strate conditions under which one finds anomalous dispersion.

Consider a wave packet about an average energy w,:

FF D= [ dke'™ [T dwf(w-w)e Y [w- £,(w) - €], (1)

where f(w— w,) is a given envelope function. With the initial condition that it be centered near the
origin at #=0, the wave packet propagates out as time goes forward. This causality requirement de-
termines the sign of I',(w), the imaginary part of the self-energy ¢,(w):

Ze(w) = Rp(w) —iT,(w), Ty(w) =0, (2)

If T is not too large, the above integrand is approximated by a pole located at w, —iI',(w,), where
w, is defined as the solution of

W, = Ry(w,) — €, =0, (3)
Now assuming f(w — w,) to be narrowly peaked about w=w,, we may expand about w, as follows:
w = &p(w) = wy = Ry(w,) +iT, (w,) +(w = wo)[1 = 3R, (wy)/w, + 13T, (w,) /8wy + <«
=€py il (W= w) ¥t e e e, (9

where €, =w,~ Ry(w,), p*=1-29R,(w,)/0w,, and the small correction terms O(i(w - w,) 8T/dw) (it
can be assumed that T is slowly varying) and O((w — w,)?) are neglected.
We now average over a large sphere at »:

sinkr
ky

€po =€) +Qu* +iT,’

F(r, t)=exp(—iw0t)fdek Pol€,) fdQ exp(- iQt)(

where @ =w - w,. We further expand & about k,, suitably averaging over angles if necessary,
k=ko+(8€/0k), €, ~ €, ) =ko+2/V,, (6)

which serves to define V,=(8¢/0k),and z=¢€,~ €, Taking slowly varying factors outside the & inte-
gral, we have

Flr, t) =exp(- iwgt) ple, ) (2ikqn) " [dQf (Q) exp(- Q1) [1(Q) - L(9)], 7
where the integrals

1,(9) = exp(ik,r) [dz explizr/ V) (Qu* +iT, - 2) "},
L(Q) = exp(~ iky7) fdz exp(—izv/V)(Qu* +iT'j—2) " @

can be evaluated by contour integration. For electronlike particles, V,>0 and the contour for I, is
closed by an infinite semicircle in the upper-half complex z plane and I, in the lower half. For hole-
like particles, V,<0 and the respective contours are interchanged. Thus,

F(r, t) =~ exp(- iwgt ¥ ikon)[1py(€, ) /kor 1F (£ = p¥v/| Vo|) exp(- 7T /| V), (9)

in which 7(1) = [dQ (%) exp(- iQ7). Except for the I

¥ sign in the phase factor, this result is indepen- going spherical wave packet, decaying exponen-

dent of the sign of V. tially as it leaves the origin, because of the in-
The sign of the dispersion parameter pu* is, coherent scattering. For pu*<0, it becomes an
however, crucial. For pu*>0, F(7,t) is an out- incoming spherical wave packet, which grows un-
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physically as it approaches the origin and then
ceases to exist at large £. The conclusion that
there is a sink at »=0, i.e., that the eigenstates
are everywhere localized, becomes inescapable.
This is in accord with the usual understanding
of anomalous dispersion in optics, a familiar
phenomenon observed in a narrow range of fre-
quencies near resonant absorption.

It is instructive to consider the example of a
retarded Green’s function,®

Gree(F, 8) == i0(){ (7, t), 47(0,00})
= [Tdwe ™t Glw+i0"), (10)

in which 6(¢) =1 for #>0 and vanishes at £<0, and
Gw) = [k [k FT(C,IC ), . (11)

We must average over the ensemble of random
configurations in the disordered medium, thus |

U= t(w) ) -3U- §(w) _
U -g(w)glw) " 1-[-3U- g(w) glw)

T(w) = -]

where

glw) =N-12k[°-’ - g(w) - Ek]-l

= fde polOw = g(w) = €™

These yield a self-energy function ¢{(w)=R(w)
—iI'(w) (independent of & in the CPA). Supposing
the unperturbed bandwidth to be A, we introduce
dimensionless units such that U=1and 6=A/U,
and approximate p, by the semicircular function,

pol€) = (4/m8)[1 - (2€/6)2]V2, (16)

for which a simple algebraic expression can be
obtained for g(w):

fw)=86"w-c=[(w=-02- 227} (%)

Combining the above with Eq. (14) we obtain a cu-

(15)

lel <39,

FIG. 1. Dispersion relations, €(w) versus w, for (a) o
=1,6, (b) 0=2.4, and (c) 0=3,0. Solid lines, real solu-
tions of the cubic equation; dashed lines, real parts of
the complex conjugate solutions for §; thick line on the
€(w) axis, allowed region over which the variable €, is
defined. At the bottom of each figure is shown the imag-
inary part I'(w) of . (a) corresponds to a separated-
band case with a finite density-of-states gap, while
(b) and (c) are examples with no density-of-states gaps.
(b) shows anamalous dispersion, with a mobility gap in-
dicated by an arrow.
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0,

restoring translational invariance of a sort:
Clw)=2n " [dke ™  [w - g, (w) = €,]7,

where the self-energy function ¢,(w) is real for
real w, and is complex, {(w=*i0*)=RFiI', with
I >0, for w just off the real axis. The branch
cut is well approximated by a simple pole, as

in Eq. (3). Our previous discussion makes it
clear that regions of anomalous dispersion will
not contribute significantly to G, (T, ¢). A spec-
tral resolution of G(T, ¢) at large » will not show
any component belonging to frequencies within
this region, corresponding to the notion of a
“mobility gap.”

It remains to calculate R,(w) and T ,(w), and
the CPA now provides a convenient and fairly ac-
curate method for doing so., We take a specific
model: the random binary alloy with potential
energy ++U at each site. The CPA equations are

(CHIC M =(2m) 10, plw - £w) - €)1, (19)

where the average T matrix is made to vanish:

(12)

(14)
{
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FIG. 2. Dependence of the quasiparticle spectrum and
and the mobility gaps upon 0=A/U and w. The density
of states is nonvanishing in the dotted regions. Regions
of localized states within our mobility gap are cross
hatched, and those within the Economou-Cohen gap are
single hatched.

bic equation in &:

wg® = 3(1- 3698 - jwi+5 =0, (18)

This is solved numerically to yield €(w) =w — R(w).

When €(w) =€,, we have located the pole. This is
plotted in Fig, 1, For 8°<4, a density-of-states
gap opens up about w=0 and there is no region of
anomalous dispersion. In the range 4< 5% one can
expand Eq. (17) in powers of w, and obtain an ex-
pression for 9e(w)/dw at w=0, This quantity
turns out negative only in the narrow range 4 < &°
<8, and anomalous dispersion again ceases to
exist at 6%>8,

It follows from the preceding arguments that
the states indicated by an arrowed portion on the
w axis in Fig. 1(b) are localized and that the mo-
bility edges at w, are determined by the vanish-
ing of de(w)/dw. The mobility gap obtained in
this manner is shown in Fig. 2 by cross hatching.
In Fig. 2 we contrast our computed regions of

anomalous dispersion to the regions of localized
states predicted by the probabilistic criterion

of Economou and Cohen, The two criteria agree
only near 6=2, This discrepancy appears to be
worthy of further study, for it suggests that there
may be more than one way to localize waves with-
in a continuum.

Our formulation gives us an insight into the
behavior of the mobility edges. Although the
mobility is not identically zero for |wl>w,, it
approaches zero when |w|—|w,| because the dis-
persion parameter p*=[de(w)/dw] ! increases
and goes to infinity at the critical energy. As we
have €(w) - €(w,) <(w - w,)? near lw,l, 1/pu*x|w
— w,l. The mobility wu is defined by wp=e?7/u*.
The lifetime 7 of a quasiparticle is inversely pro-
portional to I'(w), which can now be replaced by
I'(w,) since deviation from this value only gives
a higher-order correction. As a result, the mo-
bility near the critical point is seen to vanish
linearly as p<lw— w,l.
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