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nons exist as good normal modes in glasses at
temperatures as low as 1.7 K. We conclude that
the experimental specific heat must indeed be
written in the form of Eq. (2), i.e., the Debye
specific heat is simply masked by the specific
heat caused by the disorder. From the lower lim-
its of the phonon lifetimes determined in our ex-
periment it follows that thermally excited Debye
phonons must contribute to the heat transport in
glasses at low temperatures. The questions
whether the additional excitations observed in
specific heat also carry heat, or whether they
only scatter the Debye phonons, or, finally,
whether the additional excitations are involved
at all in the heat flow, require further studies.
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Similarities between diffusion of hot charge carriers in semiconductors and in gases
are discussed, and formulas for a~i and Di, the diffusion coefficients parallel and per-
pendicular to the applied electric field, are given. It is shown that anisotropy of diffu-
sion can be strong even when the carrier distribution function is nearly isotropic in mo-
mentum space.

Development of techniques" capable of accu-
rate measurement of the diffusivity of charge
carriers in a semiconductor parallel and perpen-
dicular to a strong electric field E opens the way
for a more thorough understanding of the nature
of the interaction between carriers and lattice.
The parallel and perpendicular diffusion coeffi-
cients, &ii and D~, respectively, have quite a
different qualitative dependence' ' upon the field
from that of the mobility coefficient p, , and may
therefore yield information not obtainable from
mobility data alone. Unfortunately, a satisfac-
tory quantitative theory of hot-carrier diffusion
in semiconductors is not available, and so the
link between diffusion experiments and charge-
carrier-phonon interaction cannot be precisely
established. Even qualitative aspects are not
properly understood: It is a common misconcep-
tion that the anisotropy of diffusion in an electric
field (i.e. , Di, wD~) arises solely from the asym-

metry (elongation) of the carrier distribution func-
tion, f(k), in momentum space. s'~ Further, it
has not been recognized that diffusion of charge
carriers in a semiconductor is in many ways
analogous to diffusion of electrons or ions in a
gas of neutral atoms. The theory of the latter
problem has received a great deal of attention
recently, ' ' and we can use some of these results
to provide at least a starting point for a theory
appropriate to semiconductors.

In relation to ions diffusing in a gas, Wannier'
conjectured the following generalization of the
Einstein relation for diffusion parallel to E:

KT
~i

8 in/.
~ &+ ~l~

a formula recently substantiated via nonequilib-
rium thermodynamics. ' It was also shown in Ref.
9 that the perpendicular diffusion coefficient is
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given by

(2)
1 1Here, 2~TiI and 2&T~ denote mean random ener-

gies of the ions parallel and perpendicular to the
field, respectively, & is Boltzmann's constant,
and e is the ionic charge. Because of the gener-
ality of the thermodynamic method used in Ref.
9, we might expect (1) and (2) to be true also for
charge carriers in a semiconductor. Nougier'
has in fact derived these equations specifically
for semiconductors. However, in attempting to
introduce microscopic concepts into these es-
sentially macroscopic equations, Nougier mis-
interprets the role played by anisotropy of the
carrier momentum distribution function: Under
conditions for which f(k) is almost isotropic in
k space, "so that it can be approximated by the
first two terms of an expansion in spherical har-
monics,

l=o m=- l
(3)

f(o) ~ I (x), $

we have an effective equipartitioning of energy
in all directions,

Ti) T~

and from (1) and (2),

(4)

Dii/Di=1+ 8(in&)/&(InE). (6)

Nougier's interpretation is effectively the oppo-
site, and he states that (4) implies Di, =Di.

It is well known that (4) holds when the carri-
ers interact primarily with the acoustic branch
of lattice vibrations, since there the phonons are
of relatively small energy and collisions are
quasielastic so that they effectively randomize
the momentum of the carriers gained from the
field. ' Similarly, scattering of electrons from
heavy gaseous atoms involves only small energy
exchange, and here the electron momentum dis-
tribution is also nearly isotropic, even at strong
fields. These two phenomena have long been
known to be kinetically equivalent"; one can ob-
tain equations for semiconductors directly from
the gas equations simply by replacing the atomic
mass by the quantity

M = I(TI./s',

where T~ is the lattice temperature and s the
sound velocity. In solving the Boltzmann equa-

tion,

sf hk Bf eE &f &f~+~ ~ ~+— 0

col lisions ~ (8)

where for the moment, the right-hand side repre-
sents the interaction between charge carriers and
acoustic phonons only, we can therefore use Eqs.
(6), (20), (27), and (28) of Parker and Lowke' to
get precise expressions for &

ii and D &. A fur-
ther modification is that in Ref. 5, the product
NQ of neutral gas density and momentum-trans-
fer cross section is to be replaced by the inverse
of the mean free path appropriate to semiconduc-
tors:

&T 2(2m&)
I '(e) = ~

ll dqq'VC '
4 Q

where & =5'k'/2m is the energy of a carrier
(spherical surfaces of constant energy are as-
sumed), m the effective mass, V the volume of
the crystal, q the wave number of a phonon, and
C, the matrix element appropriate to the elec-
tron-phonon process. For the deformation po-
tential, "E is independent of energy, and in this
case the Parker-Lowke theory predicts Dii/Di
=0.5 in the high-field limit. In other cases where
/ is a more complicated function of &, &

ll and D~
differ quite dramatically (Ref. 6, Fig. 3). Clear-
ly then, diffusion can be strongly anisotropic,
even though the carrier distribution function is
nearly spherically symmetric.

The solution of (8) becomes much more com-
plex when strong inelastic energy processes (op-
tical-phonon scattering) are included on the right-
hand side. Here, since f(k) is highly asymmetric
at strong fields, many terms in (3) have to be in-
cluded and the simplifications associated with a
small phonon energy disappear. The situation
can be compared to the solution of the Boltzmann
equation appropriate to heavy ions in a neutral
gas, where, because of the substantial energy
exchanged in ion-atom collisions and the result-
ing asymmetry of f in momentum space, a meth-
od quite different from that used by Parker and
I owke for electrons must be found. Persky and
Bartelink' have adapted the procedure given by
Wannier' for ions in a neutral gas, but found it
necessary to postulate a particular form (a "dou-
ble Maxwellian") for the spherically symmetric
part of the distribution function, f('). While this
must limit the range of validity of their theory,
the assumption implicit in Sect. V of Ref. 3 that
f(',)(A,', r, t) depends upon the number density n(r,
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—VP + ne E = nv((e&)m(V),

0 = nv((e&)(2m/M)((e& —2KT~ —2M(—V&').

Here, v is the collision frequency„

v(e)-=(2e/m)"'l '(e);

(V& = h(k&/m and (e& = 8 (k2)/2m are the mean ve-
locity and energy, respectively, related to the
components of the distribution function by

(12)

t) of carriers but not upon the gradient en/Br
renders the final expression for Dt~ not even qual-
itatively correct. To see how this assumption
can affect the final result, we take the case where
scattering is entirely from acoustic phonons and
therefore neglect f '~ in comparison with f ',
as in (4). In this limit, Eqs. (31a) a.nd (31b) of
Persky and Bartelink' give D

~t
=D ~ at all fields,

whereas we have just seen that diffusion can be
strongly anisotropic in this case, with D~~ differ-
ing appreciably from D~.

As an alternative to the purely macroscopic
equations (1) and (2) and to avoid a detailed and
lengthy discussion of solution of the Boltzmann
equation, while bringing out the most important
points, we can use the familiar approach of mo-
ment equations, in which the Boltzmann equation
(8) is multiplied by Sk and e = 8'k'/2m, respec-
tively, and integrated over k to give balance equa-
tions for momentum and energy. For simplicity,
we consider the interaction with acoustic pho-
nons only. The collision terms can be approx-
imated in a number of ways: either by assuming
f(k) to be a displaced Maxwellian appropriate to
the temperature T of hot carriers, "or, as in
Ref. 1l, by simply replacing an average over a
function of momentum by the same function of the
average momentum. In either case, one gets the
same equations as are directly obtainable from
the equations for electrons in a neutral gas" by
replacing the atomic mass by the quantity M [Eq.
(7)]:

applies. ' We treat deviations from the station-
ary, uniform state as perturbations; thus, only
the most important of the space and time deriva-
tives, the pressure gradient term, has been re-
tained on the left-hand side of Eqs. (10) and (11).
If we write

&V&=(Vg. (V,&, (~&=(e.&+(e,&, (16)

and

e E = v((e, &)m(V, &,

(e,&
=-.'KT', + —.'M(V, &',

—kT,V(inn, ) = v((e, &)m(V, )

+ v'(&~. &)(e,&m(V. &,

(e,& =M(V, &
~ (V,),

(17)

(»)

(19)

(20)

where

T,= 2(e, &/3K.- (21)

Elimination of (e,& between (19) and (20) gives

V~ =- —D V' inn, (22)

where, for a coordinate system in which E is
parallel to the z axis, the diffusion tensor is of
the form

Dj 0 0

D= 0 D

0

The longitudinal and transverse diffusion coeffi-
cients are

KT()
( 2 v'((eq&)

vm( ) e( ' v((e, ))j (23a)

where subscripts zero refer to the uniform state
and (V,), (e,& are small perturbations of order Vn,
then, upon linearizing with respect to small quan-
tities, we find the following sets of coupled equa-
tions:

(V& = (4'/3nm)1k'I" l u
(e& =( 2hII' n/m)fk'f ' dk; (I 4)

KT„~/ 8 in/
l~

e l BlnEj'

p =—nKT; and T is the temperature of the hot car-
riers, related to the mean energy by

D~= KT,/m v((e, &)

= (KT,/e)P, ,

(23b)

(24b)
(e& = 2KT. (1 5)

In deriving (10) and (ll), we have made the as-
surnption that the phonons have an essentially un-
disturbed Planck distribution at lattice ternpera-
ture T~ sufficiently high so that equipartitioning

respectively, where iI=(V, &/E is the mobility co-
efficient. It is clear from (24a) and (24b) that
this approach gives the same formula connecting
D„, D~, and p as does thermodynamics [Eq. (6)].
However, we can now interpret anisotropic dif-
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fusion in terms of microscopic concepts: The
difference between Dt~ and D~ is effectively a
measure of the gradient of v(e) with respect to
energy. For example, when v(e) is an increasing
function of energy, collisions occur more fre-
quently as the energy of the carriers is increased,
and diffusion parallel to the electric field is re-
duced in comparison with the perpendicular di-
rection, D~, ~ D~ (equality holds at zero field).
For the deformation potential, l =const and v

~ e'I', and we find from (17), (18), (23), and (24)
that D~~/D~ =0.5 (high-field limit) in good agree-
ment with the more exact result of Parker and
Lowke. '

It is clear that we cannot neglect the depen-
dence of f l upon Vn (as done in Ref. 3), for this
implies from (14) and (16) that (e,) =0, in contra-
diction to (20). [If (e,) were set equal to zero,
then we would find D~~ =D~ as given by Eq. (23b).]

The method of moment equations can be extend-
ed to the case where optical-phonon scattering
is of importance. Here, however, difficulties
arise because energy is not equipartitioned and
the pressure in (10) becomes a tensor with diag-
onal entries nvT~~ ~. The single equation (11) for
energy has to be replaced by two equations, for
T

~~
and T~. Because of these increasing complex-

ities, it may not be any more advantageous to
pursue this approach than to solve the Boltzmann
equation directly. In adopting the latter course,

a method recently described by Kumar and Rob-
son' appropriate to ions in a neutral gas may be
useful in providing a guide to tackling the prob-
lem for semiconductors.
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It is shown that anomalous dispersion of quasiparticles leads to nonpropagating states.
Therefore regions of anomalous dispersion define a sort of "mobility gap." Using the
coherent-potential approximation, we calculate the conditions for obtaining such a mobil-
ity gap in a disordered binary alloy. Just outside the mobility edges located at u, the
mobility vanishes as I ~-u, l.

We consider the question of the existence of a "mobility gap, " of whether in a disordered medium
there is a range of allowed energy levels which are all nonpropagating states. This concept, first
conjectured by Mott, ' Cohen, Fritzsche, and Ovshinsky, ' and others, is of great physical interest in
the electronic band structure of liquids, amorphous semiconductors, and disordered alloys. It has
been shown that in the disordered linear chain all states are localized, ' so that the "mobility gap"
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