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Anomalous Diffusion in a Magnetized Plasma
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It is shown that the anomalous diffusion of a plasma across a strong external magnetic
field may result from the hydrodynamic behavior of the plasma. The hydrodynamic con-
tribution to the velocity-velocity correlation function is found to be proportional to 1/B
for a magnetized plasma. It is suggested that classical calculations evaluate only what

is essentially the microscopic part of the velocity-velocity correlations, and so do not
give the 1/B contribution.

There has recently been considerable theoretical interest in the diffusion of a plasma across a strong
external magnetic field. Early calculations' had predicted a 1/B' dependence for the diffusion coeffi-
cient; however, experiments have found a 1/B dependence for sufficiently strong fields. By use of the
guiding-center model for the plasma, the 1/B dependence has been derived by Taylor and McNamara'
and Montgomery and Tappert' for a nonturbulent, two-dimensional plasma. These calculations have
been generalized to three dimensions by Montgomery, Lui, and Vahala. ' In addition, computer experi-
ments" have suggested a hydrodynamic origin for the 1/B dependence. Specifically, these computer
experiments seem to indicate that so-called "convective cells" are responsible for the anomaly. The
purpose of the present paper is to explore from a different point of view the possibility of a hydrody-
namic origin for anomalous diffusion.

At present there is no rigorous derivation of a correlation-function expression for the diffusion of a
plasma in an external magnetic field. Frequently it is speculated that an equation similar to that
found for (a) diffusion in a system with no external magnetic field, or (b) the diffusion of Brownian-
motion particles, may be valid. For ambipolar diffusion we will assume that

f" e' "J",e"(v.(0, 0)v„(x, t)), dtd'xn'
f"„e'~'"(n(0, 0)n(x, t)), d'x

where v„ is the x component of velocity, n the average number density of the electrons (or ions), and

( ), represents the equilibrium average. Equations very similar to this are often used to evaluate the
diffusion coefficient in a magnetized plasma. ' ' The order of the limits in Eq. (1) is important: first
k -0 and then g -0.' Throughout this derivation we will assume that the plasma volume is infinite.

Correlation functions such as the one occuring in Eq. (1) may be thought of as being composed of two

parts, ' a microscopic and a hydrodynamic part. The microscopic part describes the relaxation of the
system to hydrodynamics, while the hydrodynamic part describes the hydrodynamic behavior itself.
Kinetic-theory calculations frequently only determine the microscopic part. This is not a serious
problem in most cases for the hydrodynamic part usually gives no net contribution when integrated
over time, and when the appropriate limits are taken. ' In this paper we will calculate the hydrody-
namic part of the velocity-velocity correlation function and show that it does give a net 1/B contribu-
tion.

The procedure that will be followed was originally proposed by Landau and Placzek. ' It assumes
that v(x, t) in Eq. (1) can be described by the hydrodynamic equations (in our case magnetohydrodynam-
ics). ln addition, we will set the wave vector k parallel to the external field B (it can be shown that k
perpendicular to B gives identical results). The magnetohydrodynamic equations and their eigenvec-
tors and eigenvalues for k parallel to B have already been determined. " Using them we can write

v( t) = Q, p,. exp(-P,. t),

where y,. is the jth eigenvector and I',. is its associated eigenvalue. The p, 's are each known up to an
a.rbitrary constant. This constant is determined by the requirement that Eq. (2) be valid for t=0 and
also that the other important hydrodynamic variables (5v„6E„, 5E„M„, and 5B,) satisfy the initial
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conditions (5v„...) =0 when t=O. The eigenvectors from Ref. 10 can then be written a, s follows:

B,'eoP /2p B,'e P /2p 4P gP gP &P

iBg ~OP/2p

2iB,p

—2B,P

—iB,'eo P /2p

,'iB—,P

4B,P 4B,P 4B,P —,'B,P

0

5go p 5vo p —Ro p —Ro p
4cB,&, 4cB,e, 4cB,&, 4cB,~

0

where P = 5v~(1+B,'eo/p} '. The first two columns of Eq. (3}are the transverse electrical conductivity
eigenvectors, while the remaining four are the Alfven eigenvectors. Terms in Eq. (3) of order k or
greater have not been included. They would not contribute because of the order of the limits in Eq. (1).

Substituting the eigenvectors from Eq. (3) into Eq. (2) and using the values for I',. from Ref. 10, we
get

2

v„(t)'= ~2„(0)
' ' 1+—'

exp —{'o„„+icr„,) -' + —t
p p p co

&.'&o &.'~o
+~2„(0) 1+ exp -{o„„—io„,) —+ —t .

p p p E

Using Eq. (4) together with the hydrodynamic part of Eq. (1) we find that

p p 0„„+$0'„

where (v, v; 0, t=O) = J (v(0, 0)v{x, i=0)) d'x. Equation (5) is a general expression for the hydrodynam-
ic contribution to the transverse diffusion coefficient. Before we show that Eq. (5) can give a 1/B de-
pendence for the diffusion coefficient, let us simplify it by assuming that the contribution from o„, is
negligible. ' Equation (5) can then be written

D„„"= n (v, v; 0, t = 0)(B,' e,'/p) (1+B,' e, /p) 'o„„'.
It has recently been suggested, on the basis of nonequilibrium thermodynamic arguments, " that the

electrical conductivity and the particle-diffusion tensors are not independent transport coefficients.
This is in agreement with previous results found by Montgomery and Tappert' and Vahala" for a guid-
ing-center plasma. We can make use of these results" to write

D„„=(k7'/e'n, )v„„,

where 4 is the Boltzmann constant, T the temperature, e the electronic charge, and n, the electron
number density. Equation (6} implies that

D " K(uv;0, =0)"„*-=;„'(,, ) ( '+))(1+- **„)

where D„„represents the contribution to the diffusion coefficient arising from the microscopic part
of Eq. (1). If the static correlation is given by

(v, v; 0, t = 0) = k T/p,

then we get as a final result
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where A. D is the Debye length, m, the electron mass, M the sum of the electron and ion masses, u&~

the electron plasma. frequency, and z„ the electron cyclotron frequency. For large fields, Eq. (11)
has the anomalous 1/B behavior. Figure 1 shows the diffusion coefficient plotted against the magnetic
field &u~/cu„with the same parameters used by Okuda and Dawson' (Fig. 1) but assuming D„„ is given
by the classical result'
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FIG. 1. Diffusion coefficient plotted against magnetic
field. For small fields the collision-theory contribu-
tion dominates. XD ——S, m;/m =1.25, nXD ——S,5.

%hen the functional dependence of the diffusion
coefficient on the magnetic field found in Eq. (11)
is compared with the computer simulations there
appears to be general agreement. This is clear
when Fig. i is compared with Figs. 2 and 3 of
Ref. 5. (Note: Different plasma parameters are
involved in all of these figures. ) In view of the
rather small plasma volume that can be treated
in the computer simulations, a quantitative com-
parison between the present results and those
of Okuda and Dawson may not be of value. This
is particularly so since most equilibrium deriva-
tions of anomalous diffusion indicate that the
anomalous behavior becomes more important
with increasing plasma volume (in fact, diverges
in the limit of infinite systems"'). However, if
a quantitative comparison is made, it is found
that Eq. (11)agrees with the computer results

only if a multiplicative factor of approximately
is included in the hydrodynamic part of the

diffusion coefficient.
In conclusion, the present calculation gives

(a) a functional form for the anomalous diffusion
that appears to be similar to the computer re-
sults, (b) a temperature dependence for the
anomalous diffusion in agreement with the Bohm
conjecture, "and (c) a diffusion coefficient de-
fined for an infinite plasma.
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