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The dispersion-relation sum rule of Gell-Mann, Goldberger, and Thirring is gener-
alized to incorporate the hadronic shadowing effects observed in high-energy photon-
nucleus interactions. Resulting sum-rule constraints on the high-energy behavior are
discussed.

Among the various photonuclear sum rules, '
the one of Gell-Mann, Goldberger, and Thirring
(GGT), ' being based on dispersion relations, has
played an outstanding role. The GGT sum rule
states that the total photon-nucleus cross section
o'&„(&u), integrated up to the meson production
threshold (p, =140 MeV), is given by'

l' "d&u v,„((u) = (NZ/A) S(1+C),

g-=(A/NZ)S 'I "dur[Av s((u) —or„((u)],

where

S=2 'ne'/M =60 MeV mb

is the classical dipole sum, and

ar„- (Z/A)or~+(N/A)v&„

(2)

F s =(Z/A)F ~+(N/A)Fy„,

the following relation needs to be valid:

F ~(")=AF «(")

(4)

(5)

The assertion of Eq. (5) is that a photon of ex-
tremely large energy interacts with the nucleus
as a system of free nucleons, or equivalently, in
the language of multiple-collision theory, that
the photon-nucleus amplitude is entirely deter-
mined by single-scattering events.

A critical re-examination of this point will be
the subject of the present paper. Some criticism
against the validity of Eq. (5) has already been
mentioned briefly by Levinger and by Danos and

Fuller, ' although no systematic analysis has been

denotes the elementary photon-nucleon cross sec-
tion (v» and o'&„refer to proton and neutron,
respectively); A is the nuclear mass number and
Z the nuclear charge (N=A —Z). The derivation
of Eq. (1) requires the introduction of strong as-
sumptions about the properties of the photon-
nucleus interaction at asymptotic energies. For
the photon forward-scattering amplitudes on the
nucleus, F &„((u), and the elementary nucleon,
F&s(v), defined by

carried out to date. However, with the advent of
a remarkable variety of photonuclear total-cross-
section data both below the meson threshold' and
at high energies (up to about 20 GeV), ' a new

stage of discussion has been reached. In partic-
ular, the low-energy data show that the enhance-
ment f of the integrated cross section of Eq. (1)
over the classical dipole sum amounts to 0.4~ r
~ 1,2, depending on the nuclear mass number.
The original estimate of GGT was g = 0.4 for all
nuclei. Furthermore, the high-energy experi-
ments reveal rather strong shadowing effects:
For photon energies 2 GeV & ~ & 20 GeV, the ef-
fective number of nucleons in a photon-nucleus
collision, A, ~t, defined by

&y~(~) =A tt(~)o'mr(~),

turns out to be nearly independent of ~ and is
well approximated by A, &&=A' ". These effects
are commonly taken as evidence for the existence
of hadronic fluctuations in the photon propagator8;
they are conventionally treated in terms of the
vector dominance model (VDM). s'~o

Evidently, these facts cast considerable doubt
on the validity of Eq. (5). In the following, a sum
rule will be developed which formally incorpo-
rates the existence of hadronic-shadowing effects
and which is free of asymptotic assumptions like
Eq. (5).

Still, the general starting point will be the cau-
sality, crossing, and unitarity properties of any
forward photon scattering amplitude F(~) which
lead to the Kramers-Kronig subtracted disper-
sion relation'~

ReF(ur, ) —ReF(0) = ', p ~ d~
27T ~ 0

—(do

Here ~, is some fixed photon energy and

o(~) = (4n/cu) lmF (~).

The Kramers-Kronig relation is postulated to be
valid for both F»(m) and F &s(w); in the latter
case, there has been a recent experimental con-
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firmatton of Eq. (7) at ~ =2 GeV. ' The Thomson limits, ReF&„(0) and ReF&„(0), are reliably deter-
mined by low-energy theorems:

ReF yg(0) = —(Ze)'/M„= Z—'e'/AM, ReF ~„(0)= —Ze'/AM,

where M„and M denote the nuclear and nucleon mass, respectively. Introducing the quantity A, ~~(v)
as defined in Eq. (6), the following relations are obtained for ~,»p:

~OP
~

d& 2
-

2
—2& ReF (~)+ = 1+0 I

~

d(uv~((d),, A, «( ), (~)
(d —(d 0 (do' ~0

~,'P
~

d~ '-, , +2m' ReF „(&u,)+ =0.v g((d) Ze

(10a)

(10b)

Multiplying Eq. (10b) by A, ~~((uo) and adding it to Eq. (10a) yields the general sum rule (&u» p):

1 dw v&„(w) = (NZ/A)8[1+ g(A, Z)],

( )
A A, ff(v, ) 8 (&u, ) + l(&u„)

(1la)

R (v, ) = 27t'[A, &&(~,) ReF z„(e,) —ReF z„(v,)], (11b)

(11c)

' al. ' such a behavior could be related to an as-
ymptotically rising elementary photon-nucleon
cross section.

An example of a more quantitative estimate
will be presented to elucidate how the sum rule
of Eq. (11) might be used to introduce strong con-
straints on the high-energy properties of the pho-
ton-nucleus interaction. For that purpose, let +0
be chosen somewhere at the upper end of the en-
ergy region covered by experiments (for exam-
ple, &u, =15 GeV). For the evaluation of 1(&uo) of
Eq. (llc), A, &t and vz„need to be specified for
all &u ) p,. vz„(cu) is known up to about &u = 20
GeV"; a smooth (though perhaps questionable)
extrapolation to infinity may be taken from Dama-
shek and Gilman. " As mentioned before, A, &&(~)

is measured in the range between 2 Bnd 20 GeV,
and it may be reproduced satisfactorily within
the frame of a simple model, "which combines
the existence of hadronic components in the pho-
ton propagator with Glauber's multiple-scatter-
ing theory. The same model can be used to ob-
tain a reliable estimate of R(ur, ) of Eq. (11b), the
result being shown in Fig. 1.

Practically ncaa experimental information exists
about A, «(cu) in the resonance region p( &u &2

GeV. We therefore introduce an average shadow-
ing parameter 0. in that region, defined by

J d(uA, g(((u)v~„((u) =A "f d(u vq„((u). (12)

I((u, ) = u&,
' f d(a[Ad f f(&u, ) —A«&(&u)](~0' —&u') 'v &„(c ).

Clearly, this sum rule does not contain any a
Priori assumptions about the asymptotic proper-
ties of A, f f(&u) a,nd o&„(cu).

The high-energy contribution to the sum rule,
i.e. , f(A, Z), will evidently be extremely sensi-
tive to the behavior of A, q~(~). Since, on the oth-
er hand, the value of f is determined by low-en-
ergy measurements, it now looks suggestive to
use the sum rule as a restrictive condition to
study the properties of photon-nucleus interac-
tions at extremely high energies, as represented
by the specific form of A, ~~(&u) for large &u. Two
limiting cases, corresponding to qualitatively
different assumptions about the behavior of pho-
tons at asymptotic energies, are of special in-
terest:

(a) The original GGT sum rule follows from
Eqs. (11) as a special case for m, —~, A, ~~(~) =A

(i.e. , no shadowing effects), and R =0 in Eq. (lib).
However, it turns out to be impossible to com-
bine the low- and high-energy data on that basis.

(b) The other extreme situation, A, ff((00) —A'

for asymptotic energies v„has been suggested
by Gottf ried and Yennie' within the frame of the
VDM. In this case, the sum rule together with
the available experimental data implies that R(vo)
would have to be extraordinarily large and pos-
itive. This could hardly be understood, for ex-
ample, within the frame of multiple-scattering
theory, unless BeF» would asymptotically turn
to positive values. It is interesting to note that
according to recent investigations by Cheng et The integrated resonance cross section on the
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FIG. 1. Estimate of the quantity &(ao) in units of
A.S I see Eq. (11b)] at ~o =15 GeV as a function of the
nuclear mass number, using the multiple-scattering
model described in Ref. 16.

right-hand side of Eq. (12) is well determined by
experiment.

The asymptotic region (e &20 GeV) remains
open to speculation. However, the sum rule in-
tegrally combines the resonance and asymptotic
regions, so that there will be a strong relation-
ship between the resonance-shadowing parameter
a of Eq. (12) (which is measurable in principle)
and the results of any model describing asymp-
totic properties. As an example, let us study
the consequences of the (purely hypothetical) as-
sumption that the difference between A, &&(e) and
A ff(&u, ) is extremely small for cu & 20 GeV, so
that the a,symptotic part of the integral 1(~,) can
be neglected. Then the resonance-shadowing pa-
rameter is fixed by the sum-rule requirement of

consistency between high- and low-energy data
and turns out to be e =0.79-0.80, as shown in
Fig. 2. If, on the other hand, A, ~~(&u) would be
slowly and continuously rising (falling) beyond
m = 20 GeV, then n would have to be larger (small-
er) than 0.8. Actual numerical examples show
that e =0,72-0.73 for A, ff-A ' ' and cv =0.85-
0.87 for Apff A '". ln other words, slight mod-
ifications of the asymptotic behavior may stip-
ulate rather strong and observable changes in
the resonance region. An extension of the exper-
imental studies along the lines of Ref. 6 up to
about 2 GeV would thus be highly desirable.

Finally, since the asymptotic behavior of A, ff
is expected to be closely related to the asymp-
totic properties of the photon-nucleon cross sec-
tion, the sum rule of Eels. (11) might also contri-
bute to the discussion of asymptotic constraints
for elementary cross sections.
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FIG. 2. Example of a sum-rule prediction assuming that the asymptotic part of Eq. (11c) can be neglected (see
text). m is the average shadowing exponent in the resonance region, as defined by Eq. (12). The experimental data
are taken from Hefs. 6 and 1.
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We describe a new method to measure pseudo magnetic moments of nuclei, based on
the two-coil beam device of Ramsey. As a test, pseudo magnetic moments of the proton
and the vanadium nucleus were measured and found equal to their known values within ex-
perimental accuracy.

We review first the definition of a pseudo mag-
netic nuclear moment and of a pseudo magnetic
field. The formal analogy between the magnetic
scattering of a slow neutron by a pointlike mag-
netic moment and the spin-dependent part of its
nucleax' scattering by a nucleus of spin I has led
to the concept of the nuclear pseudo magnetic
moment' ~ which is defined in the following.

The nuclear scattering length of a slow neutron
by a nucleus can be written as

A~ =a +aN I ~ s„,
where s„ is the spin of the neutron, I is that of
the nucleus, and a„=(a, —a )/(I+ —,), a, and a
being the scattering lengths for the two spin chan-
nels J =I+ 2 of the compound nucleus. We assign
to every nucleus with ~t 0 a nuclear pseudo mag-
netic moment p,* by the formula' '

q* = —(Vsi/g „ro)a&

where pz is a Bohr magneton; g„= —1.91, the val-
ue of the neutron magnetic moment expressed in
nuclear Bohr magnetons; and r, =e'/mc', the
classical radius of the electron. The definition
(2) of p.* is that of a hypothetical magnetic mo-

ment that mould scatter a neutron magnetically
with an amplitude equal to the actual nuclear
scattering length a„(for a scattering plane per-
pendicular to ij.*).' '

From this magnetic analogy it is plausible to
expect that a neutron going through a polarized
nuclear target will "see" a pseudo magnetic field,

where N is the number of nuclei per unit volume
and P is the nuclear polarization. That this is
indeed so is easily proved' using the pseudopo-
tential introduced by Fermi to describe the ther-
mal scattering of neutrons by bound nuclei. The
existence pf H* as evidenced by a change y„H*
in the Larmor frequency of the neutron was in
fact demonstrated theoretically much earlier'
using the somewhat different approach of the re-
fractive index of neutron optics rather than the
magnetic analogy above. Some nuclei have large
pseudo magnetic moments. The largest, that of
the proton, calculated from (2), is equal to 5.4
electronic Bohr magnetons, ' and in a polarized
proton target H* can be quite large as in lan-
thanum magnesium double nitrate (LMN), where
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