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We show that the Voigt constitutive equations, the traditional algebraic proof of the
equality of the direct and converse piezoelectric effects, and the usual neglect of the
magnetic field are incorrect in pyroelectrics. A measurement of H will yield a nese pi-
ezoelectric tensor.

We present a summary of an ab initio linear
theory of acoustic and piezoelectric effects in
pyroelectrics, materials including ferroelectrics
that possess a spontaneous electric moment. We
find that there are several sizable indirect pie-
zoelectric effects depending upon the spontaneous
electric moment. These effects invalidate the
Voigt constitutive relations' of linear piezoelec-
tricity as applied to pyroelectrics and thus inval-
idate the usual algebraic proof' of the equality of
direct and converse piezoelectric effects in these
materials. A measurement of the usually ignored
magnetic field H should yield a neto Piezoelectric
tensor and so test our theory.

The effect of a spontaneous polarization on the
constitutive relations of linear piezoelectricity
has been considered many times. The conclusion
that there is no effect has been reached often. '
In another study' no dependence on the spontan-
eous polarization of the elastic stress, the die-
lectric current, or the electric displacement
boundary condition was found, although a spon-
taneous polarization contribution to the linear
polarization in agreement with ours was obtained.

our procedure, which wi11 be published in full
elsewhere, resembles that previously applied to

dielectrics. ' In brief, we construct a micro-
scopic, discrete particle Lagrangian consisting
of parts arising from the vacuum electromagnetic
field, the field-particle interaction, the particle
kinetic energy, and the particle stored energy,
the latter being required to satisfy invariance
under displacements, rotations, and crystal
group operations. Passage to the continuum lim-
it is then made. The positions of the particles
are expressed in terms of the c.m. position and
a set of internal coordinates. The latter in cer-
tain combinations represent the ionic and elec-
tronic resonances in the infrared and ultraviolet
regions. At microwave or lower frequencies of
interest here they follow essentially without in-
ertia. Thus the Lagrange equations for the in-
ternal coordinates with the inertial terms ne-
glected can be used to eliminate the internal co-
ordinates from the Lagrangian. Here, we dis-
card terms which will contribute only nonlinear
terms to the field or particle equations of motion.
We also discard multipole terms higher than
electric dipole. For simplicity here, we present
results only for the case in which the spontan-
eous electric field is canceled out by collected
surface charge. This elimination yields an ef-
fective Lagrangian

.",f(E' "B'-)d"+f(-2' 2.B.D .El cD Asc A Bc+PA ~A+ ~oXAg~ ~s) d~.

Here x (X) is the c.m. position (designation) in
the spatial (material) Cartesian coordinate sys-
tem where components are designated in lower-
(upper-) case subscripts. z spans the spatial or
lab frame. Transformation4 between the frames
is done to obtain a Lagrangian density in a single
system for the purposes of obtaining the equa-
tions of motion. The first two terms are the

Lagrangian of the vacuum electromagnetic field.
The electric field E and the magnetic induction
field B are functions of the vector and scalar
potentials, A and 4, in the usual way: E -=-V4
—BA/Bt, B = V x A. A and 4 are the Lagrangian
variables for obtaining the electromagnetic field
equations. The third term is the kinetic energy

763



VOLUME $1, +UMBER 12 PHYSICAL REVIEW LETTERS 17 SEPTEMBER 1973

(&)D,. =Q; +6 Ki E+e;k
H, = po 'B; —(P'x u), ,

(5)

(6)

of the center of mass, p0 being the density of the
undeformed crystal. The fourth term is the usual
elasticity term, c»~~ being the elastic stiffness
tensor and F.» being the Green measure of finite
strain. ' The fifth term is the direct piezoelectric
term in that it will give the entire piezoelectric
effect when the spontaneous polarization I" van-
ishes. Here e»~' is the piezoelectric tensor
and F„—= [E,+(x x. B),.]R,.„, where R,„is the finite
rotation tensor. 4 The sixth term represents the
contribution caused by the presence of a spontan-
eous polarization. The seventh term arises from
the electrical polarizability of the crystal,
being the linear electric susceptibility. We em-
ploy mks units.

The electromagnetic field equations that result
from the above effective Lagrangian are

p, 'V x B —e, &E/~t = &P/st+ V x (P x x)= j, (2)

&0'-E=- V P, (3)

where to the linear level

s (P)&i =&i + ~0'/t'ig+g+~igk
(4)

&' 6 i+

The indirect piezoelectric terms depending on
P' will be sizable in materials, e.g. , LiNbO„
in which I' and e,,k' are of comparable size.
Here u —= x —X is the displacement vector, u, „
= &u,/&x„; j, defined in (2), was referred to as
the dielectric current previously. The other two
electromagnetic field equations follow directly
from the definitions of E and B. Equations (2)-
(4) reduce to the customary Maxwell equations
if the electric displacement field D and the mag-
netic field H at the linear level are defined to be

+ mil m n nake sse
0 i iljk CS K S i'kl

0 a ab

Thus, the piezoelectric stiffening of the elastic
constants for plane-wave sound propagation in-
volves e, ;, of (8).

Consider next a static problem where P'~ u,
which was important in (9), will be absent. A

rectangular plate of arbitrary crystallographic
orientation is subjected to static, uniform sur-
face tractions on the two opposite large faces.
Two opposite side surfaces are electroded; the
two others are not; all four are traction free.
For each surface our boundary conditions are of
the form

T,,n, =F,/&,

(Li 1Q g)
olla

) q T/8

[(Ein E out) x ~] 0

(12)

(13)

(14)

where F, is the applied surface traction (zero
on the four side surfaces), 8 the deformed area
of the side, and Q the total surface charge in-
cluding both the deformation-induced charge and
a constant collected charge, possibly on all sur-
faces depending on crystallographic orientation,
to make null the spontaneous electric field. A
geometric (not crystallographic) coordinate sys-
tem is used with axes normal to the faces. The
unit normal n to the deformed surfa, ce is related
to the unit normal N of the undeformed surface to
linear accuracy in the displacement gradient by

For plane waves this electric field is given to a
high degree of accuracy as a longitudinal field of
the form

F, = —s se „u „/esVs,
where s is a unit vector in the direction of the
wave vector. Thus, from (7) and (10) we obtain

where Ki, is the dielectric tensor. The c.m.
(elasticity) equation that results from the La-
grangian is

~ ~

~0 i Cil jkuj, kl

fail

j,l —Til, l ~ (7)

n,. =Ni —¹u,. ;+NiÃ, u, „N . (15)

The deformed area 8is related to the undeformed
area A. to the linear level by

(8) 8 =A(l + u, ~, —N, u, ~N~). (16)

For acoustic wave propagation the electric field
in (7) that is created by and carried along with
the acoustic wave in a piezoelectric medium
should be determined from the driven electric-
field wave equation formed from (2) and the Max-
well equation V x E+ &B/st=0:

Note that the linear terms in (15) and (16), which
can include both strain and rotation, will produce
via (13) further indirect contributions to the pie-
zoelectric effect involving O'. By combining
(12)-(16) for each of the three pairs of faces we
obtain the equation

c'v x (v x E) + 8'E/st'= —e, 'Bj /Bt. (9) Q=CV+dF, (17)
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where v„ is the velocity of the acoustic eigenmode
excited. The solutions' for E and u must be sub-
stituted into (20). This is not needed for the
point we wish to emphasize. Consider the sim-
plest case: a principal direction of V aligned
with n. Then Tc ~ E ~~n and the V. E term drops from
(20). We then see that H""~ measures a new
piezoelectric tensor e»„~~ —different in sym
metry and magnitude from e, ,„measured in con
ventional piezoelectric experiments Such would.

not be true under the old theory. H""~ is readily
observable at Piezoelectric resonance: In LiNbO, „

at a 2-MHz resonance with a Q of 10', a 2X 2-
cm' 100-turn pickup coil oriented normal to the
plate surface will detect about 0.1 V for 10 V
applied to the plate. A comparison of the piezo-

where Q is the deformation induced charge on an
electroded face. The voltage to first order is
V= &ATE-N', so is the separation of the electroded
faces, N' is the unit normal to the undeformed
electroded face, and I'=- IF) is the magnitude of
the applied traction. The capacitance and effec-
tive piezoelectric coefficient are

C -=(eg, /m)N, ' (z,„+e...s,»„e„, /e, )N„', (18)

d= N; e—;,~s,m„f oNI»

where a —= 2(m+n —Im —n I), b —= 2(m+n+Im —n I),
and s,~, is the compliance tensor. Here the unit
vector in the direction of applied traction is f
—= F/E; N~ is a unit normal to the undeformed sur-
face to which the traction is then applied. Thus,
static measurements of d or the low-frequency
dielectric tensor in brackets in (18) will also
yield e,,„even though P'x u is not present in
this static problem. The combination of the de-
formed surface normal and area (which do not
enter time-of-flight or resonant-frequency mea-
surements) have changed e...~~~ of (6), used in
(13), into e, ,„.

Next consider a thickness-mode piezoelectric
plate. ' The component of H generated in the crys-
tal parallel to the major plate surfaces is coupled
outside the plate for thin electrodes because of
continuity of tangential H. This field can then be
detected with a pickup coil. If n is a unit vector
normal to the major plate surfaces, u the coor-
dinate measured in this direction, and single fre-
quency (e) excitation is assumed, then (2) with

(4) and (6) yields

electric tensor measured via H""g and e,,, of
(8) will yield a bulk, dynamic measurement of
P' for crystals in which extrinsic surface charge
nulls out E'.

Equations (4)-(7) for P, D, H, and T disagree
with the traditional Voigt constitutive relations
because of the presence of terms involving the
spontaneous polarization P'. Such terms also
enter the boundary condition on D through the
deformed surface area and normal. The ratios
of polarization to strain (4) and of stress to elec-
tric field in (7), the traditional definitions' of
the direct and converse piezoelectric coefficients,
are clearly unequal. Nevertheless, since the
direct effect really measures the surface charge
(20) or the dielectric current j (2), and not just
the polarization, both direct and converse effects
will measure the same tensor (8). Also, we have
shown that static and dynamic electrical mea-
surements yield the same tensor even though a
velocity dependent term (6) will contribute only
to dynamic experiments.

In three of the indirect piezoelectric effects—
those appearing in the polarization, the magnetic
field H, and the deformed normal the displace-
ment gradient can possess an antisymmetric
part, , that is, a rotation part as well as a strain
part. In spite of the presence of these rotational
effects we find, as expected, that they do not
affect measurement of piezoelectric constants
from acoustic wave velocity measurements, see
(11), or from static measurements when the
electrodes are attached to the crystal, see (22).
However, the rotation part appears detectable by
measuring H.

Measurement of H in (20) will test our theory
compared to the old theory. It should measure
a new piezoelectric tensor of different symmetry
and lead to a bulk dynamic measurement of P'.

We appreciate useful conversations with G. A.
Coquin.
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Simple expressions are obtained for the total reaction cross section in terms of the in-
teraction barrier for the s wave. These expressions allow the interaction barrier to be
determined experimentally. Analysis of experimental data for heavy ions on U shows
that the effective radius parameter decreases as projectile charges increase.

In charged-particle nuclear reactions, it is of
interest to measure the height of the barrier be-
tween the interacting nuclei. Such a measure-
ment provides information on the fusion process, '
which is an important intermediate step in the
production of superheavy nuclei by heavy-ion re-
actions. It may also facilitate the study of distor-
tion effects' ' and of the dependence of the barri-
er height on the charges and shapes of the inter-
acting nuclei. '

It is known that the probability of penetration
is one-half at the top of an inverted harmonic-os-
cillator potential. Et is therefore convenient to
define the interaction barrier for the lth partial
wave as the energy E, at which the absorption
probability P(E„ f) is one-half. While such a def-
inition is model independent, it assumes a sim-
ple physical meaning in the ingoing-wave strong-
absorption model' with parabolic barriers.

With such a definition, the barriers can be
readily obtained by analyzing the elastic scatter-
ing or reaction cross-section data with an opti-
cal model or by parametrizing the phase shifts.
For a given incident energy E, one finds the val-
ue of l, for which the absorption probability is
given by 1 —

) g, I' = 2. It can then be said that the
interaction barrier for the l~th partial wave is
the incident energy E. If data are available for
different energies, the interaction barrier for
various values of l can be obtained.

Qf particular interest is the interaction barrier
for the s wave which is traditionally called the
"Coulomb barrier. " We wish to present in this
article another way to measure this barrier by
employing a simple analytic expression for the
total reaction cross section obtained in the ingo-
ing-wave strong-absorption model.

( )
w 2l+1

, I+exp[27I(E, -E)ih~] (2)

Instead of parametrizing the nuclear interac-
tion in the form of a diffused potential well, as
is done in Refs. 9-&1, we wish to write E, and
k(d, as a function of l directly so that the inter-
action barrier Eo enters explicitly. This can be
done using a diffuse potential as a guide. The ef-
fective potential for the reaction is

V(r) = —Vo/(1 + exp[(r —6l, —I,)/g] j

+ Z,Z,e'/r +5'l(l +1)/2pr', (3)

where (R, and S, are the potential radii and p. is
the reduced mass. The interaction barrier for
the lth partial wave is just

E, = V(R, ),

where the radial separation R, is obtained from
the condition

[dV(r)/dr], = O.

We shall consider first two spherical nuclei
and the case of no dynamical distortion. Follow-
ing Thomas, ' Huizenga and Igo, ' and Rasmussen
and Sugawara- Tanabe, "we approximate the vari-
ous barriers for different partial waves by in-
verted harmonic-oscillator potentials of height
E, and frequency co, . For an energy E, the prob-
ability P(l, E) for the absorption of the lth partial
wave is then given by the Hill-Wheeler formula"

P(l, E) =(1+exp[2m(E, —E)/S&u, ]] '.
In consequence, the total reaction cross section
ls


