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P state since the identification of this state with
'He-8 has been suggested, for example, by An-
derson and Brinkman. " On the other hand, Soda
and Yamazaki" recently suggested E-state pair-
ing for 'He-A and D-state pairing for 'He-B.
The D- and BW P-state weak-coupling theoreti-
cal curves are given on Fig. 2. Even at T =0
the BW-state susceptibility is 0.35 of X„, so it
appears, using weak-coupling theory, that 'He-B
is not a pure BW state. The experimental data
are rather close to but apparently not coincident
with the theoretical curve for D-state pairing.
We note in this connection that Eq. (1) was de-
rived for S-state pairing so that it may not be
accurately applied to the present case although
reasonable agreement is expected. " Further,
the specific-heat ratio' at T, is greater than that
expected" for weak-coupling theories and is a
weak function of pressure. Hence we might also
expect a more complicated behavior for the sus-
ceptibility, rather than a universal, pressure-
independent behavior scaling with T, .

We wish to thank Dr. T. J. Greytak for his part
in the planning of this experiment and Dr. Bruce
Patton for a helpful discussion.
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For lattice systems with a symmetric transfer matrix, the correlation functions de-
cay exponentially with distance if the fugacity ~ lies in a region of the complex plane that
contains the origin and is free of zeros of the grand partition function. When these inter-
actions decay slower than exponentially the correlations do not decay exponentially for
small @ and, for Ising ferromagnets with pair interactions, for all values of the magne-
tic field.

The correlations between widely separated re-
gions of a thermodynamic (infinite) system are of
great interest. They play a central role in the
theory of critical phenomena' and help us to
understand the microscopic structure of thermo-

dynamic systems. ' (They also play an important
role in recent work in field theory. ') We are in-
terested here in how the asymptotic decay of the
correlation functions at large distances is related
to the analyticity properties of the free energy
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as a function of the thermodynamic parameters
of the system, in particular the fugacity z or
magnetic field.

It is generally felt' that analyticity ought to
imply exponential decay of the correlations, at
least for finite-range potentials and nonordered,
i.e., noncrystalline, systems. Indeed in many
cases where analyticity can be proven, such as
at low fugacities and/or high temperatures (or
for fugacities corresponding to nonvanishing ex-
ternal magnetic fields in Ising-spin systems with
ferromagnetic pair interactions), exponential de-
cay can also be proven if the interaction has fi-
nite range. " The general relationship is, how-

ever, not proven, despite the fact that exponential
decay is tacitly assumed to hold for one-phase
systems in many discussions of critical indices.
In this note we describe several results which
bear on this question.

The first result deals with d-dimensional lat-
tice systems (lattice gases or Isi.ng spins) with
translation-invariant pair interactions which are
bounded from below. The range of the potential
is such that, for a cubical lattice with unit spac-
ing, the interaction between lattice sites m and
n vanishes unless lm -n I ~1, a=1, ..., d, e,g. ,
nearest- and next-nearest-neighbor interactions
for d= 2. Consider a system in a rectangular
parallelepiped A. We impose "periodic boundary
conditions" on A. I et D be a simply connected
open region in the complex z plane which is free
of zeros of the grand partition function =(z; A)
for all sufficiently large A. We know from the
Yang-Lee theorem' that the thermodynamic (in-
finite volume) free energy per site, f(z), is an-
alytic in the region D. (We treat the temperature
as constant here and omit it from the notation. )
The following theorem tells us about the decay of
the correlations in D.

Theorem 1.—If D contains the origin, then for
any real z in D, and in the thermodynamic limit,
the correlation between any two sets of lattice
sites decays exponentially as the two sets get
further apart.

The results of Theorem 1 can be applied direct-
ly to various spin systems, both ferromagnetic
and antiferromagnetic, and lattice systems with
extended hard cores, for which regions D satisfy-
ing the conditions of Theorem 1 have been found

by various authors. ' We note in particular the
following corollary.

Comllaxy to Theorem 1.—The Ising ferromag-
net with pair interactions of range specified be-
fore has exponential decay (a) when the magnetic

field ht 0 and (b) at h = 0 and temperatures high
enough for the point hz=0 (i.e., z = 1 in proper
units) not to be a limit point of zeros of the grand
partition function.

Part (a) of the Corollary is a known result',
pa, rt (b) is new and supports the devotees of crit-
ical-point exponents in their faith that the cor-
relations decay exponentially for all temperatures
above the critical temperature T,'.

Theorem 1 is established by proving that a gap
in the spectrum of the transfer matrix persists
in the thermodynamic limit K- ~, where K repre-
sents a cross section of A perpendicular to the
direction of transfer. (The existence of such a
gap for finite K and real z is already known. )
The theorem remains valid for higher-order Is-
ing-spin systems (and their suitably defined con-
tinuum spin analogs'); cf. discussion at the end
of this note.

Our second result shows that there is no ex-
ponential decay if the interaction potential falls
off slower than any decaying exponential; for ex-
ample, as some negative power of the distance.

Theorem 2.—For any lattice gas, Ising model,
or particle system with two-body interactions
whose potential has constant sign at large dis-
tances and does not decay exponentially (i.e., it
decays more slowly than any decaying exponen-
tial), the infinite-volume correlation functions
also do not decay exponentially for !el&a, except
possibly on a set whose intersection with any arc
has zero arc-length measure. Here a is the low-
er bound on the radius of convergence of the
Mayer z series, given by Ruelle.

While Theorem 2 is restricted to small fugaci-
ties, the result probably holds for the whole gas
phase. It therefore indicates that for Lennard-
Jones-type potentials one should not assume ex-
ponential decay when defining critical exponents.
Theorem 2 can also be extended to lattice sys-
tems with many-body interactions, for which the
existence of a finite radius of convergence of the
fugacity expansion has been proven by Gallavotti
and Miracle-Sole. '

For ferromagnetic Ising models we can use the
inequalities of Griffiths, Hurst, and Sherman to
extend the validity of Theorem 2. This leads to
the following result.

Theorem 3.—For an Ising ferromagnet with
two-body interactions whose potential does not
decay exponentially, the two-body Ursell function
does not decay exponentially for any real mag-
netic field, at any finite temperature.

The proofs of Theorems 1 and 2 depend on
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three lemmas, which we give below, and also on
the properties of subharmonic functions. ' A
function v defined on an open connected region D
on the plane, and capable of the value —~, as
well as any real value, is said to be subharmonic
if (i) for any open connected region F. whose
closure lies within D, the values of v inside E do
not exceed those of the harmonic function taking
the same values as v on the boundary of F., and
(ii) v is upper semieontinuous and does not take
the value -~ everywhere in D.

We note that every harmonic function is also
subharmonic and that if y is harmonic in D, the
function inly(z)l= Re[In@(z)] is subharmonic in D
even if cp(z) = 0 at some (but not all) points in D.

Lemma 1.—For a lattice system, if D is any
connected open set in the complex plane contain-
ing part of the positive real axis and in which
=(z; A) has no zeros for large A, then InlX, (z; K)/
X,(z; K)l is subharmonic in D for large K, where
X„A.„... are the eigenvalues of the transfer ma-
trix for cross section K arranged in order of de-
creasing modulus (whether this defines them
uniquely or not).

Lemma 2.—If v„n„... is a sequence of non-
positive subharmonic functions on a region (con-
nected open set) D of the complex z plane, and if

lim supv„(z, ) =0

for some z,&B, then for any differentiable arc
A of finite length within D we have

lim supv„(z) = 0

for almost all z in A, where "almost all" refers
to the measure based on arc lengths of A.

Lemma 3.—For an Ising model or lattice gas,
when z&0, we have

where a is defined in Theorem 2.
To prove Theorem 1 we first use Lemma 1,

which tells us that for each K the function v(z; K)
= InlX, (z; K)/X, (z; K)l is a subharmonic function of

x, y for z = (x+ iy)CD. It is also, by definition,
nonpositive. Lemma 2 shows that if, for an in-
creasing sequence of cross sections E, the se-
quence v(z„K) were to take arbitrarily small
negative values for some z, in D, then it would

- have to do so for almost all z, in D. We know,
however, from Lemma 3 that v(z; R) is bounded

away from zero for small values of (zl; hence,
it is bounded away from zero for any z in D.
That is, the gap at the top of the spectrum of the
transfer matrix does not tend to 0 for large K.

Theorem I then follows by considering the ex-
pressions giving the cori elation functions ln
terms of eigenvalues and eigenvectors of the
transfer matrix.

Theorem 2 is proven by considering subhar-
monic functions such as v(z; r) = (lrl+ I) 'lnlu, (z;
r)/Mz'l, where u, (z; r) is the infinite-volume two-
particle Ursell function„which has a bound of the
form lu, (z; r)l&Mizl'for izl&a. At z=0 we have
v(0; r)-0 as I rl- ~, and by Lemma 2 we must
then have v(z; r)-0 for almost all z in R. The
proof of Theorem 3 then follows from Theorem 2,
as outlined earlier.

The proof of Lemma 1 uses methods developed
by Penrose and Elvey. " It is shown that lnlX, (z;
K)l is harmonic in D and that inlX, (z; K)i is the
maximum of a finite family of harmonic functions
and is therefore subharmonic. The proof of
Lemma 2 follows essentially from the definition
of subharmonic functions. Lemma 3 is proved
from the fact that the correlations in the region
of convergence of the fugacity expansion decay
exponentially. ""

Details of the proofs and more general forms
of the results will be published elsewhere. We
wish to note here, however, that it is only in the
connection between the gap in the transfer matrix
and the decay of the correlations that the severe
restrictions on the range of the interactions
(which make the transfer matrix symmetric) are
used. The persistence of the gap as R-~, at all
points z of a region E free of zeros of the grand
partition function and containing an arc on which
the gap is known to persist, holds for more gen-
eral finite-range interactions and remains valid
also for continuum fluids with hard cores (or
other sufficiently strong repulsions at close ap-
proach). Also, the fugacity z can be replaced by
one or more other parameters in the potential
for some ranges of which one has information
about the persistence of the gap in the transfer
matrix. Finally, for Ising ferromaggets the
Corollary to Theorem 1 holds for pair interac-
tions with arbitrary finite range. This can be
proven by combining the ideas of this note with
results obtained in Ref. 4.

We wish to thank D. J. Newman and O. Lanford
for valuable discussions.
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The role of the transverse energy of a magnetically focused intense relativistic elec-
tron beam in the emission of microwaves is investigated experimentally and theoretically.

There has been considerable interest recently
in the production of high-power microwaves by the
pulsed intense relativistic electron beams which
have become available in the last few years. '~

Experimental obser vations of high-power micro-
waves have been made in a variety of beam con-
figurations, including beams injected into a few
hundred milliTorr of neutral gas, ~ and magnetical-
ly focused annular beams propagating in vacuum
(&10 s Torr) in the presence of special metal
boundaries ' and magnetic field perturbations. '
Theoretical models have been developed, and cal-
culations have been carried out to try to explain
the observations, ' "but they have been hampered
by an incomplete knowledge of the properties of
the electron beam. In the present study, we con-
trol the transverse energy of beam electrons by
varying the static spatial magnetic compression
to which the beam, propagating in a straight, me-
tallic drift-tube wave guide, is subjected. We find
that if this transverse energy exceeds a certain
minimum value, microwave power in excess of
that possible by a single-particle mechanism is
obtained. Moreover, we find this to be a charac-
teristic of microwave production using the per-
turbed magnetic-field configuration. A theoret-

ical model based on an interaction between the
observed wave-guide mode and the electron beam
gives unstable waves which agree well with ob-

servationss.

The experimental configuration used for the
present study ls shown scl1enlatlcally ln Fig. 1.
The electron beam is produced by applying a high-
voltage pulse from a 7-0, 50-nsec pulse-forming
line to a foilless diode. " The diode voltage and
current are 350-650 kV and 10-25 kA, respec-
tively. The beam propagates in a 4.7-cm-i. d. ,
thin-walled, stainless-steel drift tube immersed
in a quasistatic (10-msec risetime) magnetic
field applied coaxially to the drift tube by a 22-cm-
diam, 1-m-long solenoid. By varying the distance
d in Fig. 1 between the cathode and the end of the
solenoid from —2 cm (i.e., cathode 2 cm inside
the coil) to 18 cm, the magnetic field near the
cathode relative to that in the middle of the coil
is varied from -0.55 to -0.1. Thus, the distance
d controls the magnitude of the radial component
of the magnetic field near the cathode. The inter-
action of the beam electrons with the radial field
produces the desired transverse energy. Lucite
witness plates obtained in the middle of the sole-
noid for d=- —2 and 1 cm are shown on the right-

752


