
VOLUME 31, NUMBER 12 PHYSICAL REVIEW LETTERS 17 SEPTEMBER 1973

tions, and the parameters are not readily identifiable
with simple qualities of the potential. They neverthe-
less indicate a &-state well with a depth of about 2000

cm ~, the repulsive wall of which begins to have nega-
tive curvature above about 1000 cm ~ above the top of
the well.
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We argue that the value of p in Kolmogorov's energy spectrum formula &(k) ~k ~~3

cannot be deduced from general principles. The argument is supported by exhibiting a
modified Navier-Stokes equation which has the same dimensionality, symmetries, invar-
iances, and equilibrium statistical ensembles as the original but gives a drastically dif-
ferent inertial range.

Kolmogorov's formula for the inertial-range
spectrum of high-Reynolds-number, incompress-
ible, three-dimensional, Navier-Stokes (NS) tur-
bulence is

Here E(h) is the wave-number spectrum of kine-
tic energy, C is a dimensionless parameter of or-
der 1, e is the rate of energy dissipation by vis-
cosity, per unit mass, and p, is a parameter
which is zero in Kolmogorov's 1941 theory' and
&0 in the modified theory of 1962." Equation (1)
applies to the inertial range of wave numbers L '
«k «k„,where L is the macroscale, at which en-
ergy is fed into the turbulence, and h„=(e/v')'"
(v is the kinematic viscosity) is the approximate
wave number where dissipation becomes strong.

The 1941 theory assumes that the inertial-range
wave numbers exhibit an energy cascade, from
low wave numbers to high, which is (a) local in
wave number; (b) characterized by self-similar
statistical distributions at all inertial- range
scales; and (c) dependent on the macroscale sta, —

tistics only through e. The 1962 theory invokes
a modified picture in which there is a self-simi-
lar increase in spatial intermittency of the veloc-
ity differences u(x+r) —u(x) (lri-1/h) at each cas-
cade step, resulting in increasing efficiency of
energy cascade as k rises. ' ' The parameter p.

also appears in other, related predictions of the
1962 theory. The latter is at least approximately
supported by a variety of geophysical experiments,
which consistently yield p, -0.05.' ' Measure-
ments of E(k) itself at high Reynolds numbers are
consistent with (1), but cannot distinguish p =0
from p. -0 05 "'"

Equation (1) has not been derived from the NS
equation in any solid way, and the difficulties in
trying are severe and well known. ' This situation
makes attractive some recent speculations by
Martin" and Nelkin" that (1) can be validated,
and p. determined, from general statistical-me-
chanical principles, based on dimensionality, in-
variances, and symmetries, without the need of
calculations involving the detailed structure of
the NS equation. In particular, Martin and Nelkin
point out the possibility of an analogy between Ij,

and the universal exponents of critical-point phe-
nomena.

Such suggestions should be pursued. But we
think it timely to make a counterargument of fun-
damental nature, based on the fact that the iner-
tial-range cascade is a state of strong departure
from absolute statistical equilibrium and thereby
differs qualitatively from states of thermal fluc-
tuation about absolute equilibrium.

The NS equation in a cyclic box of side»L may
be written

(8/st —v V)u;( )x= —P;, (V)l[u(x). V]u,.(x)j, (2)

where P;,(V) is the soleno. id (transverse) projec-
tion operator, defined by

P„.(v) =6,, —v 's'/sx;ex, ,

V f(x) —= —(4n) Jf(x') lx- x'I 'd'~'.

Under the transformation u(x) =Qh(k) exp(ik x),
(2) becomes

(8/st + vh')h;(k)

= —i(5;,. —h;h, ./k')Q~h(k —p). ph, .(p), (4)

where the sums are over all allowed wave num-
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bers.
If v = 0 and (4) is consistently truncated to k &K

by removing all terms where p or Ik —pl exceeds
a cutoff K, the resulting system obeys Liouville's
theorem, conserves the energy Qfu(k)~'/2, and,
consequently, has absolute equilibrium ensem-
bles of the form E(k) ~k'." Since the effective
range of energy-transferring dynamical interac-
tion in the wave-number space is a wave-number
ratio of order 2 or 4, the departure from abso-
lute equilibrium represented by (1) is comparable
to that in a gas of particles where the tempera-
ture changes by its own order of magnitude in
one mean free path. '

The inertial range must therefore be viewed as
a transport phenomenon in k space, rather than
a state of fluctuation about equilibrium. As such,
it is to be expected that p, should be influenced by
two factors which depend on the detailed struc-
ture of (2): the effective cascade step size (typi-
cal ratio of energy-exchanging wave numbers)
and the effective statistical spread introduced at
each eddy breakdown. These factors together de-
termine how fast spatial intermittency increases
with decrease in scale size.

The dependence of (1) on details of structure is
supported by consideration of generalized NS

equations of the form

(S/at —v V')u, (x) = —P;,.(V) Iv(x) ~ Vu, (x) ], (5)

where v(x, t) is any solenoidal functional of u(x, t)
which satisfies fv(x) d'x = Ju(x) d'x, where the in-
tegrals are over the cyclic box. With these con-
ditions, (5) gives conservation of flu(x)l'd'x by
the right-hand side, exhibits Galilean invariance,
and has the same inviscid-equilibrium equiparti-
tion distribution as the original NS equation.

The inertial-range cascade properties depend
very much on what v(x) is. Consider

v(x) = exp(L'V')u(x),

where L is an intrinsic length. The operator
exp(L'V') is nonlocal in x space, but so already
is P;, (V). Let a, stati.stically steady state be
maintained by driving the system at wave num-
bers -1/L with a forcing term on the right-hand
side of (5). High wave numbers in the v field are
suppressed by exp(L'V'), with the result that the
effective straining field acting on u-field scales
«L is confined to the input wave numbers. Con-
sequently, the basis for the completely local cas-
cade in k space which underlies (1) is entirely
destroyed.

Instead, individual small-scale u-field struc-

tures have negligible reaction back on the strain-
ing field, and the inertial-range energy trans-
port is effectively a linear process, analogous to
the straining of a passive scalar field by v. Then
the arguments of Batchelor" imply that the ener-
gy transport rate is proportional both to E(k) and
to the typical straining rate q-v~/L, where v~
is the root-mean-square velocity in wave num-
bers -1/L. By either dimensional analysis or
detailed derivation like that of Ref. 15, the re-
sult is

E(k)-(e/rl)k ' (kL»1).
Equation ( t) departs drastically from (1), which

is experimentally supported, with p, «1, for the
NS equation. This qualitative difference in non-
equilibrium transport behavior exists despite the
fact that the modified equation has the same es-
sential invariances, symmetries, and dimension-
ality as the NS equation. The inviscid absolute
equilibrium distributions are identical in the two
cases, if similar K cutoffs are made.

The physics of repeated random straining" im-
ply that spatial intermittency of the u field in-
creases with decrease of scale size in the cas-
cade described by (t). Because of the effective
linearity, this does not affect the exponent in (t).

How fundamental theoretical attack on the iner-
tial-~ ange problem should proceed is unclear.
No foz'mrzl analysis by perturbation theory, the
moment-equation hierarchy, "or renormaliza-
tion techniques' can settle whether (1) is a valid
equation and, if so, whether p, =0 or not. Or-
szag" has shown that p. =0 is formally consistent
with every order of the moment hierarchy and,
indeed, arises from the hierarchy under the as-
sumption that the moments and the cumulants of
any given order all go as the same power of k.
But if this assumption is not made, then p, @ 0 al-
so is formally consistent. The Eulerian renor-
malized perturbation series for the velocity co-
variance formally yields E(k) ~k "', to every
order, while low-order closure schemes that are
invariant to random Galilean transformations
lead to (1) with p, =0.' Such schemes cannot em-
body the higher statistics associated with inter-
mittency buildup. The real questions concern
which, if any, of the formal solutions imply ev-
erywhere non-negative probability distributions
and thereby satisfy all realizability inequalities.
From a physical point of view the choice between
p, =0 and tz c 0 in (1) is by no means obvious a Pzi
Oxi. The idea of a chain of stochastic eddy break-
downs leads naturally to increasing intermittency
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along the chain. ' ' But the NS equation also in-
cludes interactions among similar scales, corre-
sponding to spatial mixing of energy and, hence,
cross-linking of the cascade chains. The ques-
tion of whether such cross-linking is strong
enough to limit intermittency buildup needs an
answer.

One thing feasible is the exploration of model
systems [(5) and (6) are an example] which are
more transparent than the NS equation and which
may lead to insights. General models of conser-
vative cascade chains, of the forms

4', /dt =Zmt&nmiy my r

(9)

can be explored simultaneously by analysis and

by computer simulation. " The following caution
must be observed in relating models with limited
numbers of y's to the NS equation. Even when
there is extreme spatial intermittency at small
scales, the univariate distributions of the indivi-
dual Fourier amplitudes in infinite, homogeneous
turbulence with finite correlation scales are ac-
curately normal, by the central limit theorem,
solely as a consequence of homogeneity. " Spa-
tial intermittency is a collective phenomenon in
the Fourier representation.
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Static-nuclear-magnetization measurements show temperature-independent magnetiza-
tion in the "A" phase of He, temperature-dependent magnetization in the "B"phase of
3He, and at the boundary between these phases a discontinuity in magnetization which ap-
proaches zero at a polycritical point.

In this Letter we present the first measure-
ments of static nuclear magnetism in an all-liquid
sample of 'He. Below the line of second-order
transitions' at T, the I'-T phase diagram is split
into two parts by a line T» of magnetization dis-

continuities extending from the melting curve at
a temperature probably that of "B'"to the T, line
at a pressure of 21.7 bar. The magnetization
dis continuity appr oaches zero as the T» line
approaches the T, line so the measurements


