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is perhaps necessary to explain the subthermal
ultrasonic attenuation and/or (b) that at our high
frequencies we are observing a new type of col-
lective excitation" such as a zero-sound-like
mode. Neutron measurements'4 have shown that
such excitations are well defined in liquids. Our
measurements would, however, also require them
to propagate macroscopic distances with little
attenuation and essentially zero dispersion in
superfluid He. It is clear that numerical calcu-
lations of the lifetime of such a zero-sound mode
in He II are required to settle the question un-
ambiguously.
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The electron runaway rate in a uniform plasma under a uniform electric field is calcu-
lated by solving the Fokker-Planck equation numerically. Comparison with other theo-
retical and experimental results is made.

It is well known that when a uniform electric
field E is applied to a uniform plasma, a certain
fraction of the electrons will run away; that is,
they will gain an energy such that the electric
force on them exceeds the drag force and they
will accelerate indefinitely. The critical veloc-
ity for the latter to happen is v, - (ED/E)v„where
v, = (T/m)"' and ED= mvv, /2e is the Dreicer field,
with v=4', e'ln(A)/ , mv' sthe collision frequency
and n, the electron density. If E «E&, then v,
»e„so that only an exponentially small fraction
of electrons run away in any given time.

The number of such runaway electrons produced

per unit collision time has been calculated by a
number of authors. One of the first efforts was
Dreicer's. ' Later Kruskal and Bernstein, ' Gure-
vitch, s and Lebedev' also calculated these rates
as an asymptotic expansion in E/ED. Gurevitch's
expansion suffered from a singularity which was
subsequently removed by Lebedev. Even the lat-
ter was less complete than Kruskal and Bern-
stein, who found five distinct regions of behavior
for the distribution function. The latter authors
determined the rate up to a multiplicative con-
stant which they have not evaluated yet.

Runaways were first observed experimentally
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in the B-1 stellarator, ' but their number was
uncertain. It is now possible to determine the
runaway rate more precisely, because in the ST
tokamak, x rays produced by runaways in the
volume of the plasma are measured. ' All these
results were in disagreement, so it was felt im-
portant to carry out a numerical solution. This
was done by solving the Fokker-Planck equation
for electrons, employing a code first developed
by Killeen and Marx~ but modified extensively by
the present authors.

The code is capable of solving the fully non-
linear Fokker-Planck equation for the situation
homogeneous in space and axially symmetric in
velocity space. However, it was not employed
in this form since when electric fields are large
enough to produce substantial runaways, there

is rapid Ohmic heating and not even a quasisteady
state is expected. In the ST tokamak a steady
state is reached because the energy of Joule heat-
ing is removed to the walls by large thermal-con-
duction processes. ' Since the mechanism of this
thermal conductivity is not well established as
yet, we proceeded differently. We modified the
collision integrals in the Fokker-Planck equa-
tion, evaluating them for Maxwellian electron
and ion distributions. The Joule energy is thus
removed by effective collisions with this Max-
wellian heat bath, and a steady state is reached.
The heat bath is at temperature T.

The Fokker-Planck equation is now linear and
solved in this form. In dimensionless variables
and in spherical ve1ocity coordinates v, 8, g with
polar axis along E, it reduces to

Of 8Of E sin 8Of 1 O ~ 1d~psf 1 8 sin& 1 dpsf
Ot Ov v O8 v~sv 2dv~sv vsin8 88 2v~ dv O8'

where

a=+ av '(d/d )vv'p ~ n. =no/Mv2, n, =l/v2, C(x)=(2/Wn)j, exp(-t')dt.
j=i,e

The unit of velocity is v„ the unit of E is 2E&,
and the unit of time is v '. Z, = 1, and Z,. =Z is
the ion charge number.

The equation was solved on a uniform mesh in
e and 8, 0 & e (v~„, 0 & 8 & n. For v & v~„ it was
assumed that collisional diffusion in velocity
space was zero, i.e., y was taken as zero on the
right-hand side of Eq. (1). If v~„ is sufficiently
large, this is a good approximation. Thus, for
v &v „, the equation is first-order hyperbolic
and its solution is in principle known. The cor-
rect boundary conditions at v = v „can thus be
established for this modified problem. For the
integrations we chose v „=10. Several trial in-
tegrations with v,„=5 and 15 indicated that 10
was a large enough value to produce a determi-

nation of the runaway rate to better than 1- 2%.
The mesh was 22 steps in 8 and 75 in e. Again,
trial integration with other mesh sizes showed
that errors due to the finiteness of the mesh were
less than 1%.

Integrations of Eq. (1) were carried out with Z
= 1, E = 0.04, 0.06, O. OS, and 0.10; Z= 2 for the
last three values of F; and Z= 3 and |.0 for the
last two. The procedure of integration was to
start with f=f„= (2w) ~"exp(-v'/2), and to ad-
vance time with a step At= 0.25 until f approached
a nearly constant function in time which changed
only because of the decreasing density produced
by the runaway electrons themselves. The inte-
gration scheme was a mixture of implicit and

TABLE I. Electron runaway rates p for various Z as a function of &.

10

0.04
0.06
0.08
0.10

1.914x 10 6

5.411x10 ~

8.177x 10
1.pp4xjp ~

2.611x10 5

1.7p5x 10
5.889x10 '

1,047x 10 4

8.757x 10
9.0 xlp 6

4.49x10 '
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FIG. 2. Conductivities vD/E as a function of E.
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FIG. 1. Comparison of present numerical runaway
rates with other theoretical and experimental results.
All the theoretical results are given for & =1. Circles,
runaway rates deduced from x-ray spectra,

explicit and is described in Ref. 7. The runaway
rate y = —d(inn)/dt was determined by calculating
the flux through a sphere v=const, slightly small-
er than v,„, and dividing by the density. This val-
ue saturated to a constant in a time of order 2/
E'. It was exponentially extrapolated to its final
value.

The results for y are given in Table I and Pig.
1. y is the fraction of electrons which run away
in a, "collision time" v ', and E is the electric
field in units of 2ED. (Note the factor Z does not
occur in these units. ) Also included in Fig. 1 are
the theoretical results. The best fit to our re-
sults is the Kruskal-Bernstein theory in which
the constant has been chosen to make the results
agree at E=0.04:

y„=0.35E "'exp(- [(2/E)"'+ 1/4E]).

The slight discrepancy with Lebedev occurs be-
cause he omitted region II of velocity space in
Kruskal et al. 's notation. It is seen that Drei-
cer's result is too large by over an .order of
magnitude. This can probably be traced to his
assumption of a simple angular dependence off.
AII authors treat the modified Fokker-Planck
equation (1), i.e. , Maxwellian collisions. We
also include some experimental runaway rates
inferred from x-ray measurements on the ST

tokamak, The x-ray spectrum reached a st:eady
state whose profile corresponded to that obtained
from a freely accelerating high-energy electron
tail with a. cutoff in the MeV region. Thus the
electron distribution and the associated runaway
rate could be calculated from an assumed effec-
tive value of Z in the discharge. This Z was de-
rived from a measurement of the resistivity.
The comparison with our resuIts is uncertain for
three reasons: (a) The effective charge number
Z is not known. The charge number to achieve
agreement seems unreasonably large () 10).
(b) Our Eq. (1) does not represent the loss rates
very well. (c) Instabilities produce collisions
enhanced above the Coulomb value. By solving
the full Fokker-Planck equation with various as-
sumptions with respect to the loss rate we hope
to explore point (b) and see if agreement can pos-
sibly be achieved without invoking (c).

We also computed the mean velocity vD and elec-
tron temperature T' of the distribution f, which
differs from T because of Ohmic heating. These
are given in Table II. The conductivity for our
model, en/E in our units, is plotted in Fig. 2.
It is seen that the conductivity increases with E.
The zero-electric-field value was also computed
using a "linearized" form of our code. This val-
ue does not represent the Spitzer-Harm conduc-
tivity since we did not perturb the collision in-
tegrals. The Spitzer-Harm conductivity in our
units is indicated by S-H. It is seen that the S-H
value is roughly a factor of 2 larger. This is
probably because our assumption of Maxwellian
collisions corresponds physically to neglect of
the reaction on one electron in an electron-elec-
tron encounter. However, it is noteworthy that
the conductivity increases so rapidly with E, al-
though some calculations with self-consistent col-
lisions indicate that this increase is not real, but
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TABLE II, Mean velocity eD and electron temperature T', shown in
parentheses, for various & as a function of E,

10

0.04
0,06
0.08
0.10

0.1664 (1.074)
0.3143 (1.310)
0.5698 (1.872)
0.9S45 (2.757)

~ ~

0.2186 (1.200)
0.3904 (1.606)
0.6279 (2.196)

~ ~ ~

0.2822 (1.411)
0.4597 (1.875)

~ ~ ~

0.090 (1.124)
0.1289 (1.218)

is a product of our model. Finally, the fact that
the temperature is of order 1 indicates that our
model gives sufficiently effective cooling of the
electrons to lead to a steady state consistent with
observations, even if the cooling mechanism is
not the true physical one.

We are grateful for helpful comments from
Carl Oberman, Robert Dewar, Wolfgang Stodiek,
and Schweickhard von Goeler. In addition we
would like to especially thank John Killeen for
letting us have his Fokker-Planck code.

*Work supported by the U.S. Atomic Energy Commis-
sion under Contract No, AT)ll-l)-3073, and the U. S.
Air Force Office of Scientific Research under Contract
No. F44620-70-C-008. Use was made of computer fa-
cilities supported in part by the National Science Foun-
dation under Grant No. NSF-GP579.

)Present address: Naval Research Laboratory, Wash-
ington, D.C. 20875.

~H. Dreicer, Phys. Hev. 115, 23 (1959), and 117, 329

(1960).
M. D. Kruskal and I. B. Bernstein, Princeton Plas-

ma Physics Laboratory Report No. MATT-Q-20, 1962
(unpublished), p. 174.

A. V. Gurevitch, Zh. Eksp. Teor. Fiz. 89, 1296
(1960) [Sov. Phys. JETP 12, 904 (1965)].

A. N. Lebedev, Zh. Eksp. Teor. Fiz. 48, 1898 (1965)
[Sov. Phys. JETP 21, 981 (1965)].

~W. Bernstein, F. F. Chen, M. A. Heald, and A. Z.
Kranz, Phys. Fluids 1, 480 (1958).

6S. von Goeler, W. Stodiek, N. Sauthoff, and H. Sel-
berg, in Proceedings of the Third International Sympos-
ium on Toroidal Plasma Confinement, Max-Planck In-
stitute, Garching, Germany, 26-30 March 1973 (to be
published) .

J. Killeen and K. D. Marx, in Methods in Computa-
tionaE Physics, edited by B, Alder, S. Fernbach, and
M, Rotenberg (Academic, New' York, 1970), Vol. 9,
p. 421.

D. Dimock, D. E. Eckhartt, H, Eubank, E. Hinnov,
E. Meservey, E. Tolnas, and D. J, Grove, in Proceed-
ings of the Fourth International Conference on Wasma
Physics and Controlled ¹cleaxEmsion Research,
Madison, wisconsin, 1971 (International Atomic Ener-
gy Agency, Vienna, Austria, 1972), Vol. I, p. 451.

Transmission of High-Frequency Phonons through a Solid-Liquid-Helium Interface
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Heat-pulse experiments at 1.3 K show that the conversion of ballistic high-frequency
phonons in a solid into second sound in superfluid helium can be used to study the trans-
mission coefficient of the phonons through the interface. The transmission coefficients
for longitudinal and transverse phonons in silicon are found to be equal for heater tem-
peratures between 10 and 20 K.

During the last few years the experimental tech-
niques for investigating the transmission and re-
flection coefficient of phonons at an interface be-
tween a solid and liquid helium have been consid-
erably improved. A direct measurement of the
transmission coefficient is to be preferred over

a determination of the reflection coefficient of
phonons at the interface. ' As a result of the
acoustic mismatch between a solid and liquid
helium, the reflection coefficient is large, and
small changes are not so easily detected. Fur-
thermore, because of diffuse reflection caused
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