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We show that the Thomas-Fermi theory is exact for atoms, molecules, and solids as

Z o,

The Thomas-Fermi (TF) theory of atoms and
molecules' is now more than 45 years old. The
literature on the subject is vast® yet there re-
main more than a few unresolved problems both
of principle and interpretation. Can one show
that there is an electron density function p which
actually minimizes the TF energy expression and
that it satisfies the TF equation? Does this p rep-
resent the true electron density as computed from
the Schriddinger equation as Z -«? If so, there
appear to be some “paradoxes”: For atoms the
density falls off exponentially with distance, while
in TF theory? it falls off as "%, in TF theory
atoms shrink in size as Z -1’3 instead of growing;
the electron density in TF theory is infinite at
the nuclei instead of being finite; in TF theory
molecules never bind.*

Recently, considerable progress has been made
in showing that TF theory is applicable to high-

|
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density matter,® but the questions raised above
are of a different nature, especially in the fact
that a parameter in the problem, Z, becomes in-
finite; it is that which causes the electron density
to become infinite. We report here the results

of our analysis® of the above questions, and the
main conclusion is that TF theory, when correct-
ly interpreted, is rigorously exact as Z — «,

We also show that TF theory is rigorously exact
for solids in this limit and leads to a periodic p
which satisfies the TF equation with the periodic
Coulomb potential. This Z -~ limit is related to,
but is not the same as, the high-density limit
with fixed Z, a case to which TF theory is often
applied.” We make no statements about this lat-
ter situation.

The TF energy functional in the presence of &
nuclei of positive charges and positions (z;, R;),
i=1,...,k, in units such that #2(3/87)¥3(2m) 1=1
and lel=1, is
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The electric potential is defined to be
k
@)=~ [pWx=y|"t Py+ 2 z:lx =R (2)
i=1

The subsidiary condition is that p(x)= 0 and

)\Efp(x)d%: electron number, (3)
but we may consider A to be an arbitrary con-
stant. Finally,

k

Z=33z;. (4)

i=1

The cases A=Z, x<Z, and x»>Z are the neutral-
molecule, the positive-ion, and the negative-ion
cases, respectively. While it is easy to see®
that for a given X, E(p) is bounded below and is
strictly convex in p, the crucial question is wheth-
er there is a p that actually minimizes E and
whether it is unique. For all x>0 we define E ,
to be the infimum of (1) under condition (3).
Theovem 1: (a) If A<Z, E has a unique mini-
mizing p, If A>Z there is no such p. E, is con-
vex and monotone decreasing, and E, =E, for
x=Z. (b)If x=Z, p(x)~17281x|"% as Ix|-=, p(x)
>0 for all x, p(x) is C* away from the nuclei, and
p(x?%=p(x). (c) If A<Z, p(x) has compact sup-
port and is C* where p >0; p(x) is C* and ¢(x) is
C? everywhere. There is a C >0 such that p(x)*/®
=@(x) = C when ¢(x)=C, and p(x)=0 when ¢(x)
<C. In particular, ¢ satisfies the TF differen-
tial equation. (d) The constant C above is the
negative of the chemical potential (Fermi energy),
i.e., dE,/drx==C. (e) ¢(x)=2z;lx=R;I"* +const
as x—~R;. Hence p(x)~z;*?|x - R;|"%? near R;.
The next two theorems refer to the neutral case
and we denote the minimizing p by p(x; 2y, ..., 2,3
R,,...,R,). The TF energy plus the nuclear Cou-
lomb energy,

)3
Ez+3 )5 2:2;|Ri =R},
i%j

will be denoted by E(z,, ..., 2,; By, .., R;). The
following result® is due to Teller? and is impor-
tant in the proofs of Theorems 1 and 3.

Theorem 2: (a)If R,,...,R, are fixed and z ;*
>z, i=1,...,k with some z;*>z;, then p(x;2*;R)
>p(x;z;R) for all x. Moreover, if z;*=z; then

limp(x; 2*; R) = p(x; 2; R)

*=R;
exists and is strictly positive. (b) Molecules
never bind in TF theory, i.e.,

E(Zl’ eeey Zn+k;R1) '"’Rn+k) >E(Zly eeey Zk;Rl’ '"’Rk)
+E@p41y voerZnsniRes1s eosRugr)e  (5)
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The following theorem about the thermodynamic
limit for solids in TF theory holds for arbitrary
Bravais lattices with any distribution of nuclei in
a unit cell, but for simplicity we state it for a
simple cubic lattice.

Theovem 3: Let z be fixed. For each subset
A of the lattice of integral points, let p, denote
the solution of the neutral TF theory with nuclei
of charge z at each point of A, and let E, be the
TF energy. Then (a) as A - in the sense of van
Hove, p,(x) converges pointwise to a function
p(x) and E,/I A | converges to an intensive energy
e. (b) p is periodic with unit period. (c) p is the
solution to the neutral TF problem in a unit cell
in which lxI™ is replaced by the periodic'® Cou-
lomb potential G,(x). e is the corresponding TF
energy.

Unlike the neutral-molecule case, the Lagrange
multiplier C will be negative for solids; it is re-
lated to the compressibility. The basic tool in
the proof of Theorem 3 is Theorem 2, e.g., (5)
implies that E , is superadditive in A.

We turn next to the question of how TF theory
is related to the solution of Schrddinger’s equa -
tion. We first note that TF theory has a simple
scaling relation: Let E, [p,(x)] denote the TF
energy [function] for % nuclei of charges and
positions z;N, R;N ' (i=1,...,k), and [p,(x)d’x
=MN, with ASZ=37z,. Then

ENZNWSEU pN(x)=N2p1(N“3x). (6)

This relation allows us to relate the quantum
problem for large N (electron number) to an N-

“independent TF problem.

Theovem 4: For A< Z, let E,° and p,’(x) de-
note the ground-state energy and one-electron
distribution function for N spin-3 electrons obey-
ing the Pauli principle and interacting with 2 nu-
clei as described above. Then (a) N""®E,°~E,
as N—«; (b) N7%p,2(N"3x) = p,(x) as N=w,
where convergence in (b) means that for any do-
main DCR?, the expected fraction of electrons in
N™'2D approaches [, p,(x)d%x.

The methods employed to prove Theorems 1,
2, and 3 include L* space techniques, the theory
of convex functions, and the theory of harmonic
functions. The basic fact used in Theorem 4 is
that the introduction of Neumann (Dirichlet)
boundary conditions on subdomains lowers (rais-
es) the ground-state energy. This fact has been
used before.!! In two places problems arise that
do not appear in the theory of gravitating fer-
mions, 512

From the above theorems a picture of large-Z
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atoms that resolves the aforementioned “para-
doxes” can be formulated. The electron cloud is
divided into five regions:

(1) An inner core of size ~Z "'/ described by
TF theory in which the density is ~Z?% and in
which there are ~Z electrons.

(2) The mantle of the core in which p~1728/x|™®
independently of Z. The length scale of the man-
tle is also Z/® and the core and the mantle con-
tain 100% of the electrons as Z —~,

(3) A complicated intermediate region.

(4) The outer shells. Crude models, in which
one takes into account screening, suggest that
this region has a size of order 1 and contains
~ 7?5 electrons. Chemistry takes place here.

(5) The outside of the atom where the density
falls off exponentially with distance.

In understanding TF theory, then, one princi-
ple must be borne in mind: TF theory describes
the atomic core and mantle, and only those.
These two regions contain almost all the elec-
trons, but their size shrinks like Z /3, There
is no difficulty reconciling the [x|™® falloff here
with the exponential falloff in region (5). The
shell region, which is what one sees chemically,
is enormously large compared to the TF region
but it contains a negligible fraction of electrons.
It is not surprising that molecules fail to bind in
TF theory, because to do so would require core
binding and, as Teller noted,* this would imply
that molecular sizes would shrink as Z '3 and
binding energies would grow as 2"/, Instead,
binding occurs in the shell region.
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