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tions from spherical symmetry. We will sketch
the derivation of this result here; the details
will be published elsewhere.

Choose the apex, P, of the unperturbed null
cone so that it lies at the center of spherical
symmetry and is sufficiently close to the sing-
ularity so that the past null cone intersects no
matter outside the Schwarzschild event horizon.
Outside the horizon, then, 4» and A can be as-
sumed always to vanish. The affine parameter
r can be chosen so that the two-surfaces of con-
stant r are natural spheres left invariant under
the rotations which define the spherical symme-
try. The quantity T vanishes for the unperturbed
spherical collapse and, therefore, the first-order
perturbations in it determine A. to second order.
The perturbation in 7 can be found by writing
out the perturbed Newman-Penrose equations and
separating the angular dependence by expanding
in spin-weighted spherical harmonics as in Ref.
11. Letting T~'~ denote the radial part of the per-
turbation in 7. corresponding to a particular mul-
tipole l, one finds for the physically interesting
l ~2 cases

T (r) =Kr + [(l —1)(l + 2)/2]' r

x J (d z/z') f d x x'@,(') (z), (8)

where the integrals are taken in the past null
cone of P, 44 ' is the radial part of the pertur-
bation of the Riemann tensor component —R~&q
x n m n&nz, and R is a constant depending on
how r is chosen. The quantity +4 ' itself is the
solution of a second-order homogeneous linear
differential equation. " The solution correspond-
ing to ingoing waves on the horizon is bounded
there. Sufficiently far in the past, 44~'~ will be
calculable from the static precollapse geometry

and, for the physically interesting l ~ 2 perturba-
tions, will fall off sufficiently fast to make the
integrals in Eq. (8) converge. The perturbation

therefore will be finite in the neighborhood
of the unperturbed horizon. Since the size of
the perturbation is by definition small, one con-
cludes by integrating Eq. (1) that an average
trapped sphere must be formed slightly inside the
unperturbed horizon to second order in the de-
viation from spherical symmetry. In other words,
the property of a spherical collapse that average
trapped surfaces are formed is stable under sec-
ond-order perturbations from spherical symme-
try.
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If particle or antiparticle total cross sections 0&, 0& are unbounded as E , using
unitarity it is shown that on the average the ratio (oz -o'&) /(a'&+a'z) 0.

Recent experimental data at the CERN insect-
ing storage rings' indicate that the proton-pro-
ton total cross section increases with laboratory
energy beyond the 300-GeV region. At the equiv-

alent laboratory energy of 1500 GeV the proton-
proton total cross section reaches 43 mb. The
antiproton-proton total cross section decreases
steadily as energy increases and reaches the
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same value at 60 GeV, the highest energy where
experimental data are available. It is therefore
of considerable interest to find out whether the
Pomeranchuk theorem in the form (o~ —v„)/(v~
+ o„)- 0 can be violated, where o'~ and v„are
particle and antiparticle total cross sections.
The purpose of this note is to give a proof that
this is not possible, if a'~ or v~ are unbounded.

Using unitarity, Eden and Kinoshita' proved
that, if as E —~ it is true that O'„-CJ,(lnE) and
o&-C&(lnE)", then C~=C„. Because of the spe-
cial form assumed for the behavior of the total
cross sections, their demonstration is not suf-
ficiently general. It is desirable to have a gen-
eral proof using only consequences of axiomatic
field theory. A step forward in this direction
was recently made by Truong and Lam. ' They
proved that if there was no cancelation between
the zeroth and the first moment of ~0, then

llm

where lnE(b. o)2 = I, dE' b, v(E')/E' with similar

definitions for (a'z)2 and (o'„)~. Although it is
difficult to construct simple functions where can-
celation exists, their proof cannot be regarded
as completely satisfactory. We give here a dif-
ferent method to prove rigorously Eq. (1). The
problem of oscillations of the total cross sec-
tions is controlled by the averaging procedure
as used in the Ref. 3 and also by the properties
of the univalent functions introduced earlier by
Khuri and Kinoshita.

For simplicity we assume the existence of a
dispersion relation. The following proof is also
valid if there is a finite region of nonanalyticity.
Let us denote by f»(E) the forward particle and
antiparticle amplitudes with E the laboratory en-
ergy. The optical theorem is Im f(E) = (4m) ~q

&&0'«, (E), where q is the laboratory momentum.
We begin first by writing the inverse dispersion
relation for the forward amplitude f, = f~ —fz. —

2E'p ""[Ref.(E') —bE']dE'Im, E =—
(E i2 E2)E i"0

where b is a subtraction constant at E =0. Let
us integrate Eq. (2):

, dE' 1 " E'+E , dE'
J Im f,(E') „=——

~

ln —, Ref,(E')

where we have interchanged orders of integration and neglected a constant on the right-hand side (rhs)
of (3). Since Imf(E) =0 for 1E I &m, the integral converges at E =0. This equation is important to de-
rive asymptotic theorems described below.

Let us now improve the Froissart-Martin' bound for (Acr)z Since. tf, (E) t~ CE ln2(E) for E sufficient-
ly large, where C=2/to, with t, =4m2 and m the pion mass, then using (3), we have for E sufficiently
large

., da' C " Z +Z, , ds'
(4)

After changing the variable of integration to x =E /E, performing the integration, and using the optical
theorem and the definition of (Acr)~ we have

(~o), ~ (4w'/f, ) Im. (5)

This result improves the Froissart-Martin bound by a power of lnE. ' It should be emphasized that no
assumption was made on the high-energy behavior of b, o to derive (5). From this bound, it is clear
that if the sum v~+ v„ increases faster than lnE, then the Pomeranchuk theorem in the form (1) is
proved. More precisely, if

then (5) implies (1). The proof given below is valid for a more general situation.
We note parenthetically that by using the same method, if ( f,(E)1/E ln8 - 0, the usual Pomeranchuk

theorem for bounded total cross sections can, be proved in a simple manner, i.e. , (b, v)z = 0 as E —~
as derived by Truong and Lam from the proof of Martin. ' The Pomeranchuk theorem for the differ-
ential cross section can also be proved by an equation similar to (3).'
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We now give a general proof of (1) using analyticity and unitarity in the form '
If~,~l - EC (I~)o,„"',

where C' =1/2(7/t, )' '. (&T» can also be replaced by the corresponding elastic cross sections. ) Using
these bounds in (3) we have

+p

, dE' C' "" E'+F, ~y2, ,g2, dk,
Im f,(E'),2

-— ln, , 1nE'[a/'/ (E'') + o/,
'/ (E')]

Q p
(6)

Our purpose is to express the rhs of (6) in terms of quantities which are easier to handle. To do this,
let us construct the following function H(E) which is analytic in the upper half plane:

"~ i~z[o 1/2(Et) + o 1/2(EI)]
'lt +f2 g2

Following Khuri and Kinoshita let us construct the (univalent) function G(E) which is also analytic in
the upper half E plane:

G(E)= 1 a(E')dE /E (8a

whose real part, apart from the factor C', is the rhs of Eq. (6), and whose imaginary part is

ImG(E) = J lnE'[o '/'(E')+o "'(E')]dE'/E'. (8b)
0

From the Froissart-Martin bound for o'/, ~ we have 0&ReG(E) &ln2E and 0& const &ImG(E) & ln2E. From
these bounds, it is clear that G(E) is a slowly varying function, and since it is antisymmetric under
crossing, we expect (ReG/ImG) &C/lnE. In fact Khuri and Kinoshita' show that, in order for the up-
per bound for I G(E) t to be valid, there must be at least an infinite sequence of points (E; j, E; —~ as
i —, such that

ReG (E;) const
ImG (E;) lnE,

Using this in (6) together with (8b) and the method to be described below, we can show that there ex-
ists an infinite sequence of points &E;J, E;-~, such that

(a(x&, /(o +o„& . -0,
which is the desired result. This can be made more precise as follows.

It can be shown that by using the phase representation of G(E) the following equation is valid:

(10)

~ E (1+a)1/2 dE' 2 "~ a(E )lnlG(E')l, =—,dE'+O(1), (11a)" E(1-a)1/2 ~/ p

where b(E)=)T/2 —|)(E)&0, 5(E) is the phase of G(E), N(a)=21nl(1+a)/(I —a)l, and 0&a&1. From the
bounds of IG(E)l it follows that

(2/1/) I /2 (E')dE'/E' & 3 ln lnE. (lib)

Inequality (11) shows that b (E) &21//InE except on a set of points which has an asymptotic zero density.
Since b, (E)-0, we can replace it by ReG/ImG. Hence

ReG (E)/ImG (E) & 21//lnE.

Using inequality (12) in (6), we have

6m2C' dE'l(~.&.l-, E
' l~'[."'(E )"."'(E')] E, .ln'E +0

Using the Schwartz inequality for the rhs of (13), we arrive at

(12)

(13)
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Dividing both sides of (14) by (a~+ c„)s, it is straight forward to show

We define the unboundedness of the total cross
sections as

llm (g~ g)s = ~.
g~ oo

Hence if (v~) and (o'„) are both unbounded the rhs
of (15) is zero which is the desired result [Eq.
(1)]. Equation (14) shows that the same result
holds if only one of the total cross sections is
assumed to be unbounded; it then follows that
the other cross section must be unbounded, too.
From Eq. (1) or (10) it is also clear that there
exists a set of points (E;), E;-~, on which Ao'/

(o'~+0„)-0; in particular, if Ao'/(Uz+o'~) has a
limit, this limit is zero.

We should like to emphasize that inequality (14)
is quite general; it is also valid if we replace
(o'~)s and (a„)s by the corresponding elastic cross
sections. If one is willing to make a strong as-
sumption that v„, 0~ are bounded then the coef-
ficient 2 on the rhs of (12) and (14) should be re-
placed by unity. In this case one gets a general-
ization the results of Roy and Singh. ' For pion-

nucleon scattering, if isospin invariance is as-
sumed, a restriction on (Ao)s in terms of the
charge-exchange cross section m P —v n can be
similarly obtained.
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We report here the results of a measurement of the integral energy distribution of the
neutrino-induced muon Qux deep underground using the Utah neutrino detector. Five neu-
trino-induced muon candidates have been obtained from the approximately 108 muons
wrhich have passed through the detector during 603 days of live operation out of 830 days
total elapsed time. By comparing the observed and expected energy distributions we are
able to set lower limits on the saturation energy Eo of the total neutrino-nucleon cross
section or, equivalently, on the mass ~q of the intermediate vector boson if scale invari-
ance of the inelastic structure function vW& is assumed. We find at the lo, 20, and 30.

levels of confidence Eo & 820, 80, and 28 GeV or ~z & 10, 5, and 8 GeV, respectively.

The observation of a muon flux induced by the
interaction of cosmic-ray neutrinos in rock deep
underground has been used to investigate the
nature of the weak interaction. ' ' Previous ex-
periments have yielded values for the integral
muon flux, but none thus far has analyzed the
high-energy spectrum of the observed muons. In
this communication, we report the results of a
measurement of the spectrum of the underground

neutrino-induced muon flux made possible by the
unique University of Utah neutrino detector. '
We compare the observed spectrum with those
calculated for different assumptions concerning
the high-energy (E,& 10 GeV) behavior of the neu-
trino-nucleon total cross section. Comments
are made on the scale invariance of the structure
functions measured in inelastic neutrino-nucleon
scattering, and a lower limit is placed on the


