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transitions to the ground and 4.63-MeV levels of
'Li, which is probably due to mixed-L transfers.

To extract spectroscopic factors which can be
quantitatively compared to theoretical predictions,
one must account for kinematic effects which
might affect the relative excitation of states. As
a crude preliminary approximation one can ne-
glect these effects and look at the ratio of yields
at the first maximum. [A fairly extensive at-
tempt was made to fit these data via the zero-
range distorted-wave Born approximation (DWBA)
assuming an n-cluster transfer. Unfortunately,
only poor fits were obtained, although at 65 MeV
the angular momenta in the entrance and exit
channels are well matched. This failure may be
due to the fact that the 'Be optical potential is un-
known; in addition neglect of finite-range effects
may contribute. ] At the first maximum, the ex-
perimental ratios of the differential cross sec-
tions of the first excited to ground states of both
"C and 'Be are closely equal to 2, while the cor-
responding ratios of spectroscopic factors" are
5.5 and 1.3, respectively.

While it may require detailed excitation func-
tion studies to conclusively determine the direct
nature of the (n, 'Be) reaction at 65 MeV, the
strong population of only those states which are
predicted to have significant Q. -structure ampli-
tudes implies a dominant direct reaction mech-
anism. Hopefully, a description of this n-trans-
fer process by an exact DWBA approach will en-
able quantitative tests to be made of spectroscop-
ic predictions. Furthermore, using this rela-
tively simple Be identifier, extensive compari-
sons with other o. -pickup reactions like (d, 'Li)

and ('He, 'Be) will be made possible.
We would like to thank Dr. F. D. Becchetti for

useful discussions on direct reaction theory.
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A theory of the rr-nucleus optical potential is developed from the exact propagator of a
pion in the presence of a nucleus. The crossed T(-nucleus diagrams, absent in previous
work, are shown to have significant effect on the cross sections and the elastic-scatter-
ing wave functions of low-energy pions.

There have recently appeared in the literature
a number of papers discussing ways to improve
the 7l -nucleus optical potential. ' Although we
find that most of these efforts have been primar-

ily concerned with the description of the basic
pN interaction, there is an additional feature of
z-nucleus scattering which is physically signifi-
cant and should be included in the construction of
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an improved optical potential. This is the role of
p-nucleus crossing. Though the importance of
crossing in the description of the mN interaction
has generally been appreciated, the distinct phys-
ical processes described by crossed p-nucleus
diagrams have not previously been considered.
In this report we examine the role of crossing in
the construction of the optical potential and the

effects of crossing on the p-nucleus total cross
section and the elastic-scattering wave functions
of low-energy pions.

To derive an optical potential one must convert
the many-particle problem into the one-particle
problem of a pion moving in an effective potential.
A convenient method to accomplish this is to con-
sider the one-pion Green's function

&Pk'IG(~) I ok& = ~ f«e'"&+.
I
Tf~ g ~ (t)~;~'(0)J I+o&&&+o I+o&

which describes the propagation of a pion from
the state with momentum k and isospin n= 1, 2, 3
to the state (P, k') is the presence of the nucleus
in its ground state, described by the exact wave
function Cp. The symbol T denotes chronological
time ordering of the second-quantized pion crea-
tion and annihilation operators, a

& (0) and a&& (t),
respectively. We neglect nuclear recoil and work
in the nuclear rest frame. Then, if the propaga-
tor can be written in the form

&Pk'I ~(~) I
~k& = &Pk'l[~ —~ —U(~) 1 'I »&, (2)

with h the single-pion free Hamiltonian, h~k)
= &u„~k), ~„'=k'+m, ', U(~) can be identified as
the pion optical potential to be used in the Schro-
dinger equation. The representation (2) can be
obtained by a perturbation expansion of the right-
hand side of (1) in a Goldstone-type linked-cluster
expansion. U(~) is then identified as the sum of
all proper diagrams, defined such that any dia-
gram can be made up by connecting these proper
diagrams with single pion lines propagating for-
ward in time, for which the propagator is (&u —h)

For the perturbation expansion we write the
Hamiltonian of the z-nucleus system as H Hp
+ K,. IIp includes the free-field Hamiltonians for
the pion and nucleon fields, counter terms to
shift the bare masses to physical masses, and a
nucleon-nucleus potential of the Brandow' type
relevant for the nucleus under consideration. H,
=K,„+H» —counter terms, where H„~ repre-
sents the pion-nucleon interaction and II» de-
scribes the nucleon-nucleon interaction. Here we
need not specify H, in more detail as the formal
developments in this paper will be independent of
the specific forms of both H,~ and H».

The eigenfunction of H, with the same baryon
number as the target nucleus and the smallest
eigenvalue will be called the vacuum. Clearly,
this is the model wave function of the ground
state of the nucleus in the Brueckner theory. If
we now carry out the linked-cluster expansion of
G(~), we find the following: The subdiagrams

which represent conventional mass renormaliza-
tion are canceled by the counter terms, and the
subdiagrams which represent the renormaliza-
tion of the nucleon propagator due to the interac-
tion between two or more nucleons produced by
HNN or by H,„(thr ough second- or high-order ef-
fects) are canceled by the nucleon-nucleus po-
tential (by definition). The remaining series of
proper diagrams are shown schematically in Fig.
I, where the ground-state nucleus is taken as
the vacuum.

Figure 1(a) represents the most important class
of proper diagrams, i.e., those where the pion
of momentum k comes in, interacts with a nu-
cleon and excites the nucleus which remains in
an excited state until the pion finally comes out
with momentum k'. Its value will be represented
by &k'~D(&u) ~k). (Here and in the following we will
ignore isospin symbols. ) The diagrams in D can
be broadly grouped into two sets~ne containing
the diagrams where the incoming and the outgoing
pions interact with the same nucleon, and the
other containing all remaining diagrams. The
first set represents the elementary mÃ scattering
in the nuclear medium. The resulting amplitude
differs from the free pN scattering amplitude
through three important effects, viz. the exclu-
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FIG. &. Goldstone diagrams for U(~).
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sion principle, the nuclear excitation energy,
and the rescattering of the internal pions. In the
nucleon-nucleus optical potential the analog of D
is approximated by summing a relevant subset of
diagrams, e.g. , the ladder diagrams. The history
of p-nucleon scattering has shown that a similar
approximation scheme does not work here, and
the only viable approach is something like the
Chew-Low theory. The other set of diagrams in
D represents multiple scattering and may be
evaluated in terms of the elementary mN ampli-
tude.

Figure 1(b) represents the simplest crossed
(proper) diagram; and Fig. 1(c) represents the
second term of a series of cross diagrams.
These diagrams describe the process whereby
the nucleus emits two pions and returns to its
ground state. One of the pions comes out in the
final state, while the other suffers a series of D
interactions and is eventually absorbed, as is the
incoming pion. The p-nucleus crossing described
here has not been incorporated into previous cal-
culations of the p-nue1. eus interaction based on
the various multiple scattering theories, ' nor is
it present in the many-body theory of Dover and
I emmer. ' %e note that diagrams such as the one
shown in Fig. 1(d), where we have crossing with-
in crossing, are not proper diagrams, but are
iterations [in the context of Eq. (4)] of the series
of crossed diagrams.

Summing the proper diagrams gives for the
optical potential

U((u) = D(u)) —D((u)((u+ h+ D(&u)] 'D((u), (3)

and the fully off-shell scattering amplitude satis-
fies the I ippmann-Sehwinger equation

T((u) = U((u)+ U(u))((u —h) 'T(( ). (4)

Introducing T(&u) = (2h)'~T(&u)(2h)'~ and the invari-
ant potential

V(&u) = (2h)'i'D(&u) (2h)'i',

and using (3) in (4) gives

T((u) = V((u)+ V((u)((u' —h') 'T((u). (8)

With the normalization (kll) = (2w)' 2u„5(k —I),
the matrix elements of T and V are invariant
quantities, and the matrix elements (k'lT(~„) lk),
with Ikl = lk l

are invariant scattering amplitudes;
that is,

Im(k
l T(~,) lk) = —uo...(~,)/4~. (7)

Thus while U(~) is the potential to be used in the
Schrodinger equation, V(w) is the invariant po-

tential for the Klein-Gordon equation.
If we now consider the optical potential con-

structed without the addition of the crossed p-nu-
cleus diagrams, i.e. , U(~)=D(~), and introduce
T, =(v+0)''T, (~+8)'', where T, is the Lippmann-
Schwinger amplitude, we find

Ti(~) = Vi(~)+ Vi(~)(~'-I') 'T&(~),

v, (&u) =—
I

— v(&u) l

(8)

(9)

(k l V(~) lk) = -18&'v(u)v(u )k' kg

x(lk'-kl)ie(&)e(~')]'ff(~), ('0)
where H=h, +28, +2h, +4h, . p(q) is the Fourier
transform of the nuclear density p(r), which is
normalized to the number of nucleons; v(k) is a
form factor for the zN interaction. ' The energy
variable 2 which appears as the argument of the
Chew-Low functions is related to w, the pion en-
ergy in the nuclear rest frame, according to'

co= —~M„+ 2[M„'+ 4(M~++ 1)]'~ —b,

where n. represents the average energy needed

TABLE I. z-C tot31 cross sections Oz.

7t. energy
(MeV)

20
30
40
50

100
150

Og
(lnb)

Crossing

9.98
43.9

369
493
565
642

(Tz

(mb)
No crossing

8.62
31.9

214
541
608
656

The potential V, is formally what has been used
in previous calculations. Again, (klT, (~,) lk) is
the scattering amplitude in the sence of Eq. (7).

To demonstrate the role of crossing we present
in Table I the p-C" total cross sections for sev-
eral pion energies, with and without crossing,
which are obtained from Eqs. (6)—(8). The cal-
culations were done with a V obtained by summing
off-shell zK amplitudes h„(&u), which are pro-
jected onto the four spin-isospin channels (p,
= 1, 2, 3, 4), and are given by the Chew-Low theo-
ry." Since the target has zero spin and zero an-
gular momentum, only the scalar-isoscalar part
of the pA amplitude is relevant. Furthermore,
for this illustrative calculation the exclusion prin-
ciple is taken into account only partially. Thus
we use
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to excite a nucleon from the Fermi sea, M„ is
the nucleon mass, and the first term on the right-
hand side of (11) represents the change in energy
in going to the pN c.m. frame, where the nucleons
are taken to be static. The factor p(k) represents
the effect of the Pauli principle on the interaction
of the "external" (incoming and outgoing) pions
with the bound nucleons and is related to the fac-
tor E(k) by

(12)

I I

WITH CROSSING
———WITHOUT CROSSING

0.6—

0.4

Irn P

with m the average occupation probability of the
states in the Fermi sea. The exclusion-principle
factor E(k) is appropriate for a O'K Fermi gas,
but it is felt that the modification (12) produces
a factor which is more consistent with the use of
exact nuclear states. In the present calculation
we have taken n = 0.8.

There is also a need to include exclusion-prin-
ciple effects in the interaction of the intermedi-
ate-state pions ("internal" pions) with the nucle-
ons off which the external pions scatter. This
may be accomplished by a modification of the zN
intermediate-state contribution to the Chew-I ow

amplitudes. However, the nature of the Chew-
I ow equation is such that this correction, in con-
junction with the P factor, may lead to an over-
statement of the role of the exclusion principle.
For this reason we have not included Pauli cor-
rections for internal pions.

Using this model for V we have also examined
the effects of crossing on the wave functions of
low-energy pions. There are theories of pion
production in which the effects of the pion's final-
state interaction are approximately taken into ac-
count by using the z-nucleus elastic -scattering
wave function. ' A careful examination of such
theories shows that the appropriate wave function
to use is the Schrodinger wave function and not
the corresponding Klein-Gordon wave function.
(We have found that these wave functions in co-
ordinate space differ by several percent at short
distances, though become equal asymptotically,
for low-energy elastically scattered pions. )

In Fig. 2 there are shown the p-wave radial
Schrodinger wave functions g(x) for 40-MeV pions
elastically scattered from C" calculated with and
without p-nucleus crossing. The difference shown
here is expected to be significant in pion-produc-

0
0.5 I.O

I

l. 5 2.0 2.5I m' r' ~
FIG. 2. 40-MeV p-wave Schrodinger wave functions.

tion calculations.
Finally, we note that for both the cross sec-

tions and the wave functions the importance of
crossing decreases with increasing pion energy.
This can be understood from a comparison of (5)
with (9), and from the fact that because of the
finite size of the nucleus the matrix elements
(pIV(&u)Iq) are largest when 1.6m, ~(m, '+p')'~',
(m, '+q)" sm, .
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