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We choose an uncompensated plasma because the
sample used in Ref. 3 was n-type (though at room tem-
perature it is almost intrinsic), and therefore has
more electrons than holes. In addition, for the sake of
simplicity, we consider the collision time g to be in-
finite, except for a brief discussion of the effect of col-
lisions on the low-frequency surface mode. In the ab-
sence of collisions, bulk helicon propagation can only

occur in an uncompensated plasma, and the bulk mode
discussed in Ref. 2 only occurs if n ~ &n 2.

It is logically inconsistent to use a local dielectric
tensor in the collisionless limit considered throughout
most of this paper. However, for the higher frequency
modes it is possible to have ~7»1 while gl is suffi-
ciently small to justify use of a local theory.

This dispersion relation has been derived previously
by Chiu and Quinn, the second paper listed in footnote
1.

For these vaIues of y& and y2 the real and imaginary
parts q are roughIy equaL in magnitude. This may ac-
count for the fact that harmonics of the fundamental
transmission resonance were apparently not observed
experimentally.

These values are larger by almost an order of mag-
nitude than one would expect for InSb at room tempera-
ture. More realistic values, however, actually inter-
change the order of some of the curves of Fig. 2.
Therefore, our results can only be taken as qualitative
and suggestive of a possible explanation of the experi-
mental results of Ref. 3.
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Heteropolymer melting corresponds to a low-temperature phase transition in a one-di-
mensional two-component Ising m.odel. A leading-order approximation for an additive
physical quantity in the melting region is introduced; it is intimately connected with the
microscopic statistical herteropolymer structure. This allows one to derive the hetero-
polymer distribution function (over the length and composition of the sections) directly
from experimental data.

In the simplest case, heteropolymer (HP) melting is described' by a two-component one-dimensional
Ising model with Hamiltonian

n

H=-,' g [U(a„)(1+sz)+(V/4)(L —s~z„)];ss„=s„V&(1, U);

a~ ——1 2; s~ ——s1; U(1') =U) U(2) = —1, U&0.

Here a„a„..., a„represent the fixed component
sequence; the s„determine the "thermodynamic
state" of each link, i.e., all the {sJ. sets are in-
cluded in the statistical sum; lU(2) l= 1 defines
the choice of energy units. We set s~„=s, just
for convenience; sE=+ 1 and s~= —I represent
the "helix" and "melted" (or "coiled"') states (k
and c states), respectively. A section which con-
tains only k or c links is an k or c section (HS or
CS'); a CS which neighbors only with an HS is an
"isolated" CS (ICS). The most probable state of
a section is the one with the smallest value of H
or (in the case of equal H values), it is a CS (see

below). In a HP, the energy V is much larger'
than the thermal energy kT. This fact allows
one to use the ground-state energy E as the lead-
ing order approximation (in k T/V) for the free
energy (this statement ean be proved rigorously),
and the problem then is to calculate E = min(H)
over all {s ) sets.

Let us plot (see Fig. 1) the helix-state energy,
B„=UI.„-K„,as a function of the number of
links M (L„andKs are the numbers of compo-
nent-I and component-2 links, respectively, and
I.~+K~ = M; the points at Fig. I are joined by
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FIG. 1. The helix-heteropolymer energy Hz as a func-
tion of links number M. PQ, M&', and SI' are the new-
born coiled sections; MN and ST heights equal V, RQ
height is less than V. V/2 is the surface energy be-
tween helix and coiled sections.

are met. The inequality n ~ V makes a CS better
than an HS; the conditions n' & 0, n & 0 (the lat-
ter is equivalent to n'& n}, and n' & —V prevent
the existence of an h state of the appropriate (+,
—,and i) segments. The inequalities n, & —V,
(n+, n ') & —V give the exact specification of the
neighbor sections. (The section will have just
one neighbor if we choose its left-hand boundary
for the first link of the HP; this is possible be-
cause s„+,=s, . If this single neighbor has n

straight lines). We shall describe any sections,
e.g., RS in Fig. 1, by its "height" n=H~-A~,
and define the heights n '= H„-H~, n = II~

-H ~,
and n'=H~ -II„,where M, N, Q are arbitrary in-
ner points of the section (see Fig. 1). The same
quantities for the left- (e.g. PR) and right-hand
(e.g. ST}neighbor sections will be denoted by the
subscripts + and —, respectively. It is clear
from (1) that the change of a helix section to a
coil section corresponds to the change of H varia-
tion at the boundaries by a VP height jump, where
P = 1 or P = —1 when both neighbors of the section
are HS's or CS's, respectively, and P = 0 when
one of them is a CS and the other is an HS. Thus,
a CS is more probable than an HS if the section
height exceeds or equals VP. It can be proved
that the n-height ICS is the best one when, and
only when, the conditions

n~ V, 0- n'-n, n' —V;

0&(n ', n, }&—V, n, & —V

n=0 0-8'(V. n «-V+

& V, 0 &n'(V.
0&n, ) —V;

[Here and below, a tilde denotes a new-born seg-
ment and its neighbors, as in (3).] The segment
and its right-hand neighbor (3) form only part of
the ICS in the general case. The rest of the ICS,
as well as the ICS right-hand-neighbor section,
does not influence the birth of the segment, but
it can provide the simultaneous births of the next

) —V, it will be coiled and the basic section will
not be an ICS.) The specification of the neighbor
sections together with (n, , n ') &0 makes them
HS's.

Any failure of the conditions discussed either
destroys the completely coiled state of the basic
section, or coils the neighbor segment (or seg-
ments'). The geometrical meaning of (2) is evi-
dent. If we call "regular" a section which has
0 & n+ n (or 0& n'& n for n &0}, and "strictly
regular" a section which has 0 & n ' &n (or 0 & n '
&n for n & 0), then the section will be an ICS (for
the given U) if (1}its height exceeds or equals V,
(2) it is regular, and (3) both its neighbors are
strictly regular until their heights for the first
time become less than —V. If U increases mono-
tonically, all the heights increase or remain un-
altered. Therefore the first four inequalities of
(2) cannot be violated (while the next ones can}.
Thus, a CS remains a CS and may grow only by
the coiling of the links of the neighbor sections.

The birth of a CS can be investigated on the
basis of formula. (2). An ICS can appear in one
of four possible ways determined by which one of
the inequalities (2) is satisfied last (or simulta-
neously with any of the following inequalities) as
U increases. (All but the first four inequalities
can fail but cannot become valid as U increases. )
The new-born CS (or CS's) is easily ascertained.
If U = U, is the point of appearance of an ICS,
then the ICS segment (or segments) which is a
helix at U= U, —0 is just the. new-born CS at U
= U, . Suppose the first inequality in (2), n = V, is
the one satisfied last (or one of the last). Then
the new-born section appears as a whole (e.g.,
section MN in Fig. 1) and is the "P =1"type sec-
tion.

If it is the second inequality that defines the
type of the new -born segment, i.e., if n & V,
min(n') = 0, then the new-born segment forms the
left-hand part of the ICS, its right boundary being
the last ICS point where n'= 0. This may be
called a "P =0, q =1"segment, with
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type of CS. If n & V, n'&0, but max(n') =n [i.e.,
min(n ) = 0], the new-born "p = 0, q = —1"segment
(e.g., PQ in Fig. 1}forms the right-hand part of
the new-born ICS and is quite analogous to the
previous type of segment.

The last possible case corresponds to n & V,
0&n'&n, and min(n ) = —V. The longest seg-
ments of those whose height equals —V are the
new-born segments (e.g., ST in Fig. 1) of "p
= —1"type (.If there are some of them, they
have different heights of starting points. ) The
p-type and q-type new-born CS's are described
by the conditions

n =pV, 0 mp~n+ &V; mp ~n & —V,

where

mp = p + (1 -p )s, 8 = + 1.

These definitions allow the overlapping of the
new-born CS's neighbor sections, but exclude
the overlapping of the new-born CS's themselves.

The geometrical sense of the relations (4) is
easily understood [as soon as they are written
separately for each p or q —see, e.g., (3)] and
is as simple as that of the relations (2). The
first equality from (4) defines U~=(K+pV)/I.
= U+PVL, where (L, K) refers to the new-born
CS. It allows one to write the conditions of CS
birth in the terms of segment composition only
(y, , define p = +1 and y. .. define p =0):

y =max[-pn'L/L, -pn, '(1+L, '/L) ', pn'(1 —L'/L) ']& V;

y, =max[Pn, (1+L,/L} ', Pn, 'L/L, ']& —V; y, =max(n'q, -rqn, ') &V;

y, =max(rqn, )& —V; y, =max(-qn+ —0, rqn, ')&0; g=+1.
(5)

The bar over the n's denotes the heights at U= U; maxima are taken over all the variable points and
over all the figures in parenthesis.

Let us calculate y, , for any HP section (e.g., QN in Fig. 1) together with its arbitrary (but fixed)
neighbors (e.g., AQ and NT in Fig. 1, A and T are arbitrary), and let us construct the distribution
function A~(L, K;y„y,}, P =+1; A, (x; y„y„y,}, x=L/(L+K), of the total number of links of all the ap-
propriate sections [i.e., the middle (L,E') sections of three consequent sections which are character-
ized by y» or (for any q) y. ..]. (Of course in this way any link may be calculated more than once. )
if conditions are satisfied, the section (L, E) is a (p- or q-type) newborn CS, and vice versa. Thus,
the integration of the A s over the regions (5) gives the distribution functions Q~(L, K; V) and Q, (x; V)
of the t'otal number of links of the p-type new-born CS (p = a1, 0}.

These three smooth functions of the four variables 1., K, V, and x are enough for the exhaustive de-
scription of the ground state of quite arbitrary component sequences. [Analogous functions, but de-
pending on a larger number of variables, describe excitations and thermodynamics with the accuracy
exp( —V/kT}. ] The condition U~& U determines the CS; thus, the numbers of a links in a c state (A,)
and of boundaries between CS and HS are given by

N,(U, V) =QL, ~»(L~»+K~~~) 'Q (I.~», E&»; V)+ Jx.q, (x; V)dx;

1V~(U, V) =2P(L ~ +E ~ ) 'Q (I ~ K ~ V)

x -x x —1-x E' '-0 L' '-(E' "+V)/V;

L( ' «0, K( '} L 'U+V; x (U+1} '; p=+1;

summation is performed over the indicated p,
L ~, K ~ . When V = const/U and 1/U-O, then

Ã, -I-» N, -E~, and N-0. Any additive physi-
cal quantity (per link) G, which equals g,' at an a
link in s state and equals g, at the state bounda-
ries, can be written as

G=G'+G', G'= Q,g, n, +g,n„-
g.=g.'-g, ; n, =N, /N, n, =iV,/N,

where G' is the G value in the HP h state. [For
example, in the ca.se of energy, g, = U(a), g, = V/2;
the relative total number of the c links, which
determines' the optical density, corresponds to
g =I, g~=0. ]

If three physical quantities are measured for
given U, V, then Equations (7') allow one to find

n, and n, . They determine (for these U, V) the
relative number of links of the CS (n =n, +n, ), the
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average CS-component concentration x =n, /n, and
the length l=2n/n, . The specification of U, V de-
termines the CS distribution function n =n(x, l).

If the component sequence is known, one can
calculate directly Q~, Q, when one notices that
Fig. 1 represents a one-dimensional Markov pro-
cess of M steps (the "coordinate" Ir„vari es with
"time" M); thus, the number of links N„(n)at the
height n after M steps is N~(n) =wN~, (n —U)
+ (1-w)N„—1 (n= 1), where w is the probability
(depending on the sequence correlations) of the
l component at the previous place. The relations
(4) determine the boundary conditions. For in-
stance, the boundaries n = 0, t/' are not intersect-
ed if N„(n)= (1 —w)N„,(n+ 1) for n & U and N„(n)
=wN„,(n —U) for n&V —1. When V»(1, U), the
differential form of the equations for N„is a well
known system of diffusion equations (as w, and
thus N~, depend not only on n, but also on the
component environment) with boundary conditions
at n = 0, V. If N, (n) = 5(n), then N~(n) is the prob-
ability density of the appropriate section.

The calculations of Q~, Q, are then straightfor-
ward. The case of a random sequence corre-
sponds to m = const; its first description by Brown-
ian motion was given by Vedenov and Dykhne. '
The solution of the general case of arbitrary corn-
ponent numbers and interaction is quite analogous
to the one described and allows one to obtain the

distribution function over the CS length and com-
position (which is as detailed as is allowed by the
interaction radius). For V»(1, U) (as is the case,
e.g. , for DNA), the CS corresponds to the essen-
tial composition fluctuations, and only the most
probable CS, which have almost definite length
and composition, are significant. In this case,
the Q's depend mainly on I-, K in the approxima-
tion which is logarithmic in V'/(U+1)'. Within
this accuracy one can extract the ready-made HP
distribution function over the length and compo-
nent of the sections directly from the experim en-
tal data. s The main feature of this investigation
method is the possibility to study the long-range
many-particle correlation relations, while all
other methods refer to the short-range correla-
tions.
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