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Structural Transition in the Ising-Model Interface
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We have studied the interface between regions of opposite spin in the simple cubic Ising
model. Low-temperature expansions of moments of the gradient of the density profile
and of the slope at its midpoint suggest that the interface width diverges at a tempera-
ture T~ about half the critical temperature. We discuss the physical significance of this
transition and implications for general theories of interfacial properties.

Recently, there has been much progress in the
understanding of the two-phase region in the Is-
ing model. Qobrushin' has shown that at suffi-
ciently low temperatures in the simple cubic Is-
ing model with appropriate symmetry-breaking
boundary conditions, there exists an interface of
finite width between translationally nonequivalent
regions of mostly "up" and mostly "down" spins.
In contrast, Gallavotti had proven for the square
Ising model that there exist large fluctuations
which cause the interface width to diverge at any
finite temperature. In this Letter we present evi-
dence suggesting that at a temperature T~ about
half the bulk critical temperature T, , interfacial
fluctuations in the simple cubic Ising model be-
come large enough to cause a divergence of the
interface width and to produce singularities in
the interface thermodynamic functions.

A transition at a new temperature T~ & T, may
seem surprising since most known eases either
of interface or free-surface thermodynamic func-
tions are nonanalytic only at T,. Examples in-
clude Onsager's~ exact calculation of the square-
lattice interface free energy (interface tension),
(T, Fisher's and Ferdinand's4 results for a num-
ber of related two-dimensional (2D) lattices, and

the results for a free surface in two or three di-
mensions, most recently discussed by Binder
2nd Hohenberg. '

However, the following simple argument, given
in essence by Burton, Cabrera, and Frank in
1951,' suggests why the interface in the 3D Ising
model should behave differently. At T = 0 the
(100) interfa, ce between regions of up and down

spins for a simple cubic lattice is perfectly flat.
The spins in the lattice planes immediately above
or below the interface feel no vertical mean field
from the rest. of the lattice, since the interac-
tions from their neighboring lattice planes cancel.
This suggests that a boundary lattice plane might
behave like a 2D Ising model, with large spin
fluctuations and thermodynamic singularities at

the 2D critical temperature T,' which is only
0.503T,. This argument helps rationalize the
other cases: The interface in a 2D Ising model
is iD and hence has no critical point. Similarly,
the surface layer of a free surface is in a non-
zero stabilizing mean field from the plane below,
and no additional singularities would be expected.

Similar conclusions follow if the 3D interface
is treated by other approximate means such as
the Bragg-W'illiams' or the Bethe approxima-
tions'; Kikuchi' has most recently predicted in-
terface thermodynamic singularities using his
cluster variation methods. However, the struc-
tural implications of these treatments RI'e not
very clear and mean-field and higher-order ap-
proximations are sometimes misleading when

applied to critical-like phenomena, .
%'e consider here the low-temperature expan-

sion method, much used for critical phenomena,
to examine quantities which yield information
about the possible structural changes in the inter-
face. I et the successive (100) lattice planes in a
simple cubic Ising model of dimensions I ' with
isotropic coupling constant J be at z = ~ —,',~,',~-,',

An external magnetic field H(z) uniform in
the region z & 0 tends to point those spins up, and
a similar reversed field points spins down for z
&0. The magnetic fields act rather like a stabi-
lizing gravitational field in a real fluid system.
We assume periodic boundary conditions in the
x-y directions and antiperiodic boundary condi-
tions between the positive and negative z bound-
aries. We require the limits II-O, giving us an
infinitesimal symmetry-breaking field, and L,

—, the infinite-volume limit. Using lattice-gas
language where an up spin is an occupied site and
a down spin a vacancy, we define the layer densi-
ties p(z) normalized so that at T = 0, p(z) = 1 for z
&0 and p(z) =0 for z &0

Information about the density profile can be
obtained from moments of the density gradient
dp(z)/dz. '0 In a lattice system these are defined
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("")= Z [p( --.')-p( +-.')]""~

g &CO

(z ) may be determined for a fluid by measure-
ments of the interface ref lectivity, and E= (z')'"
gives a measure of the interface width. At T =0,
l=0, and Dobrushin's work' implies that / re-
mains finite for low, nonzero, temperatures.
However, at T„we would expect the large fluc-
tuations to cause l (and all the even moments) to
diverge to infinity.

The layer densities p(z) themselves give further
structural information. At T =0, p( )=0, and
p(- —,') = 1 and these must change only slightly at
very low temperatures. At TR, however, one
would expect the interfacial fluctuations to cause
p(-,

'
) = p(- 2 ) = 2. Thus the quantity M= 1/[ 1 —2p —,']

should diverge as T -TR. Note that M ' gives
the slope dp(z)/dz of the density profile at z =0.

We have derived low-temperature expansions"
for these and related quantities. No qualitatively
new computational problems arise when an inter-
face is present, but the quantitative details are
more difficult because of the symmetry reduction
and the much larger number of low-energy con-
figurations of overturned spins which can be ex-
cited near the z =0 nominal interface. For exam-
ple, at 0(Y') in the expansion variable Y=e '
there are nearly 3000 different connected config-
urations touching the z =0 plane including large
horizontal clusters of up to twenty overturned
spins and vertical towers extending to the z = +4
planes. We have generated by computer all the
contributions through 0 (Y') from single connect-
ed interface clusters or from groups of two or
three separated clusters, leaving only a relative-
ly small number to do by hand. "

Table I gives the low-temperature expansion
coefficients for (z'), (z~), and M-1. The results
of a Pads approximant analysis'~ of the logarith-
mic derivative of the series is given in Table II.
This analysis is based on the assumption that
near TR the dominant singularity is of the form
(Y —Y'~), where Y'~ is the va, lue of I' at T~, and

L9 is the exponent. The predicted transition tem-
perature T„, in units of the critical temperature
T„and the exponent 0 are given for various
[A, D] Padd approximants.

The results of Teble II show reasonably good
agreement between the various Pads orders in
predicting a transition temperature T„at about
0.57T,. However, the results of any series anal-
ysis must be viewed with caution, and the series
we have used are not very long, so the quantita-
tive accuracy of these results is difficult to esti-
mate. The important point is that such physical-
ly different quantities a.s (z') and M both a.re pre-
dicted to diverge at essentially the same nonzero
temperature TR, in agreement with the physical
picture we have discussed above. As is typically
the case, the apparent convergence of the expo-
nents" is less satisfactory. The relation between
the exponents in Table II, however, does suggest
that the density profile cannot be scaled in terms
of a single temperature-dependent characteristic
length l(T).

Further evidence that TR is not related to the
bulk T, comes from the anisotropic limit of the
Ising model in which the vertical coupling J, be-
tween lattice planes approaches infinity, giving
the solid-on-solid (SOS) ' model familiar to crys-
tal-growth theorists. In this limit no new verti-
cal "broken bonds" can occur, so bulk excitations
and overhanging configurations are suppressed
and T, tends to infinity. I ow-temperature ex-
pansions for the SOS model give essentially iden-
tical singularities to those described here for the
isotropic Ising model. This is to be expected
since at TR the bulk densities in the isotropic
Ising model differ by less than 2% from the T = 0
values. These SOS results, together with analy-

TABLE II. Estimates of the transition temperature
&z and exponent ~ derived from the f+,D] Pade approxi-
mants to the logarithmitic derivative of the series in
Table I. Here + and & refer to the order of the poly-
nomials in the numerator and denominator, respective-
ly.

TABLE I. Low-temperature expansion coefficients
4, f» @=2&1 .

For &z'&

T~/T 0
For &z4&

T~/T 0
For M

T~/T 6

2 3 4 5

(z & 2 6 40 144 826 3270 17 364 74 832
(z & 2 6 64 192 1570 5190 35 460 135648
~- 1 2 8 88 176 854 4116 20 210 99 088

[8, 3] 0.576 0.999 0.581 1.85 0.546
[2,4] 0.577 1.01 0.586 1.43 0.546
[4, 2] 0.560 0.785 0.5M 0.644 0,546
[2, 8] 0.579 1.02 0.589 1.50 0.546
[~p2] 0.579 1.02 0.602 1.78 0.547
[2, 2] 0.575 0.997 0.570 1.92 0.549

0.782
0.782
0.792
0.784
0.802
0.818
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sis of the interface thermodynamic functions for
both models and Monte Carlo simulations of the
SOS interface, all of which indicate singular be-
havior near T~, will be presented in detail in
another paper. Some indirect evidence for the
existence of a transition at T„ is given by mod-
ern theories of crystal growth" which use the
concept of surface roughening at the "roughening
temperature" T~ to describe changes in equilib-
rium crystal morphology.

The divergences in interface width l and other
singularities we have described should occur
only in the limit II-0+. They are analogous to
the divergences in interface width which occur in
the drumhead model" of the liquid-gas interface
as a result of long-wavelength surface ripples
when the gravitation constant g - 0+. However,
the lattice-gas interface "roughens" at a finite
Ts and not at T =0 as for the (continuum) drum-
head model. A complete theory of interface prop-
erties must include the effects of a stabilizing
field, and theories which introduce only bulk
thermodynamic concepts and which use the con-
cept of an intrinsic (field-independent) interface
width" cannot explain the present results. How-

ever, these approaches may still be useful for
describing the behavior of the interface width in
a finite field near T„since the dependence of
the density profile on the external field H is prob-
ably very small when H is finite, rather than in-
finitesimal. The intrinsic-width theories may ac-
curately approximate the actual interface width
over a wide range of finite external fields. "
More work is needed to resolve unambiguously
the contributions to the interface width from a
postulated intrinsic width and from long-wave-
length surface ripples, and to assess their re-
spective dependencies on an external field.
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