
VOLUME 31, NUMI3ER 8 PHYSICAL REVIEW LETTERS 20 AUGUsx' 1973

tempted to use negative ions, but find the signal is
smaller by nearly 2 orders of magnitude. While this is
not completely understood, we believe that the reason
is mainly that negative ions are more tightly bound to
rings, and thus it is harder to form free ions from
charged rings.

M. Steingart and W. I. Glaberson, Phys. Lett. BGA,
211 (1971). Typical drag losses are a few volts (-4 V
for data shown in Fig. 2) which is small compared to
the apparent energy of the neutral vortices emitted
from the microphone. This small energy loss could
also explain why the time-of-flight deduced radii are
slightly smaller than the cross-section deduced radii.

Such a distribution in velocities could also be ob-
tained with different quantum numbers; however, in

such a case we would expect to see several peaks in-
stead of a single smooth bell-shaped trace.

The energy measurements, which will be published
elsewhere, were obtained recently in another apparatus
and they agree with the size results.

~ G. Gamota and T. M. Sanders, Jr. , Phys. Rev. Lett.
21, 200 (1968).
~~The equations relating energy, velocity and radius
are 8 =- zw R(ln(8R/a) —2); v = (x/4vrR) [jn(8R/a) —2],
where 8 is the energy, & is the circulation, 8 is the
ring radius, & is the core radius, and v is the velocity.

G. Gamota, A. Hasegawa, and C. M. Varma [Phys.
Rev. Lett. 26, 960 {1971)]show that the final width of
a charged pulse of vortex rings varies inversely as the
square root of the density.
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An electromagnetic wave obliquely incident on an inhomogeneous plasma has a reso-
nance near ~0 ~& Q). It is shown that temporally growing modes exist for parametric
decay into ion-acoustic and electron-plasma waves in the vicinity of this resonance in
spite of the density gradient. For typical laser fusion parameters the maximum growth
rate is comparable to the ion-acoustic frequency. The mechanism can contribute to sig-
nificant power absorption.

An electromagnetic wave of frequency ( 0 inci-
dent obliquely on an inhomogeneous plasma and
with finite electric field component E„parallel
to the density gradient has a resonance near &0
= ~,(x), where great enhancement of E„occurs.
At this resonance, significant absorption takes
place. In a cold plasma, this absorption is due
'to the breaking of the large-amplitude plasma
wave, resonantly driven by E„of the pump, as
has been demonstrated by a recent numerical
simulation. ' In a hot inhomogeneous plasma, the
plasma wave excited at resonance propagates in-
to the low-density region and becomes Landau
damped. For sufficiently large pump fields, para-
metric processes may invalidate the conclusions
of linear wave-transformation theory.

Here, we consider the parametric decay of the
pump field in the vicinity of the resonance into an
electron-plasma and an ion-acoustic wave. Be-
cause of the resonant structure of the pump wave,
temporally growing modes exist even in an in-
homogeneous plasma. The growth rate of the
most rapidly growing mode is, for typical laser
fusion parameters, comparable to the ion-acous-
tic frequency. The decay waves are preferably
aligned with the density gradient. The energy ab-
sorption coefficient has a maximum value of —,'.

Consider an obliquely incident electromagnetic
wave on a plasma with a monotonically increasing
density. Neglecting ion temperature and separat-
ing the high- and low-frequency response of the
electrons, we find two coupled differential equa-
tions for the ion and electron density fluctuations:

2 +2v, —+u, —U, V n, =—(vn;) '
E&&, +2p,.—-~,2XD V n;= —(Vnz) 'Ec,

where cu, and cv; are the respective electron and ion plasma frequencies, and U, is the electron ther-
mal speed. We have neglected terms of order (VEo/Ec)(Vn, ;/n, ;) '.' Writing

n, = a, exp [i [co,t —h, x- J,"ah~(x') dx'j)+ c.c., n; =a, exp)i [coat -h, x- Jc"Aha(x') dx']}+c.c., (2)

where ~, =~,(l+Sh'A~')'" and ~, =~;ivXD are the decay wave frequencies with ~,+~,(0)+~, = 0, we then
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find, upon keeping only first-order variations of a;(x, t) in space and assuming that the time variation
of a; is slow compared to ~~ but possibly comparable to ~„ that

8 9—+ v —v —a = a *k E *exp[+i f"«dx'-i6t]
~ x 2s's (d

(2i&u, ) ' 2+2i~, —+ v;+v2 —a, = a, *k E,*exp[if, «dx -i5t],
~ x 2M(i2

where vi+3kv, 2/&ui, vm= c„k=-ki(0) =km(0), «=P;Ek; = «x, and we have for convenience taken the
density gradient and k2 in the x direction. Note that 6 is not arbitrary, but rather a known function of
k.

The resonance behavior of the component of the electric field parallel to the density gradient has
been discussed by several authors. 4 Near resonance (x=0) one has

Z„/Z, „=e (7)(2~i g)-'"L/[x+ i~], (4)

where L =n/n'; b. = (A. z,
'L)'", the resonance width, is due to finite electron temperature; 7= (PP)"3

&& sino; and 4(r) is of order unity for a narrow range of angles of incidence.
Following Rosenbluth, ' we examine Eq. (3}for the existence of temporally growing modes. Laplace

transforming in time with p the Laplace transform variable, neglecting initial values, eliminating a„
and letting

1 P*+v, 8*+v;
az —p+ exp z —K dx+- — x

0 2 2 g

where B = (2i&u, ) i(p2+2im, p), we then find that

d'y/dz'+f (z)y = 0,

where the function f (z) is given by

f(z) =a'/(z'+&')+ —,'«"(iz+d)'
and the WEB approximation is valid provided n» I. Here

1 4' E " (2mb+) '"L 1 p+ v, B+v; i5 1
2 4znT A. D

'
I(,

"
v~ U2 v~ z —i b

(6)

(6)

We have neglected corrections to f(z) of order a ', u;/cu„and corrections proportional to v;.
Equation (6) has four complex turning points. The position of the turning points depends on the mag-

nitude of the pump field and also on the relative magnitude of d, A. In Fig. 1 are shown the turning
points and anti-Stokes lines for some representative values of these parameters. %e will find that the
turning points z, and z2 are located on the real axis for the most rapidly growing modes.

Examining Eq. (6) for large IzI we easily find that there are solutions which are well behaved at z

=~, namely,

g'(z) =f '"(z) exp[i f; f'"(z') dz'], P(z) =f'"(z) exp[-i f' f'"(z') dz'],

where z, and zz are the turning points in the upper balf-plane. These give solutions to Eq. (3) which

behave for large IzI as

a, '(z}-z '"exp/[- (p*+ v, )/v, ]z], a, (z)-z '"exp([(B"+ v;)/v, ]z).

Thus spatially localized but temporally growing
modes exist provided an eigenvalue p ean be
found with Rep &0, ReB &0. The eigenvalue equa, -
tion for P is

(n+ —,')w = f"f'"(z) dz. (10)
82

We look for an eigenvalue p comparable in mag-

nitude to & 2, in which ease the (z —i&) term in
d can be neglected. From the definition of d we
have Id I » & provided kA» 1, which we assume.
In this case if the turning points are located such
that Iz,I«IdI, a condition we must verify aposte-
~i oui, the function f (z) can be approximated in
the region between the turning points z„z2
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FIG. 2. z, /& as a function of the pump strength a
and mode number n. In the limit z&/6«1, z&=&((2s
+1)/ ) i/s

FIG. 1. Turning points and anti-Stokes lines for the
differential equation d g/dz + f(z)P =0.

through

f (z) = a'/(z'+&') - ,'~"d'. -
The other turning points, z3 and z~, are located
far amay in the lower half plane.

The integral in Eq. (10) can then be evaluated
in terms of complete elliptic integrals and the
eigenvalue p determined. By definition of the
turning points we can write

f (z ) = a'/(z'+ &') —a'/(z, '+b '), (12)

and, substituting into Eq. (10), we find Imz, = 0
and thus

d = 2a/~'a[1+z, '(a)/a']'". (13)

In Fig. 2 is shown the obtained:relation between
z, /b and the pump strength a. The limiting range
z, /b. «1 is readily found from Eqs. (10) and (12)
to be

z, /b, = [(2n+1)/aj'".

rates' are comparable to the maximum growth
rates in a homogeneous plasma at the same val-
ues of pump amplitude and kA. D, and the threshold
for the existence of the modes (a»1) is about
equal to the threshold for spatial amplification of
decay waves in the vicinity of the classical turn-
ing point where ~, =~o'cos 0. The frequency
shift Ac is approximately equal to — cu, for small
pump amplitude, increasing as the pump ampli-
tude is increased and passing through zero when
y-602. For large pump amplitude y=&~ and y-a" . This gives y-Eo well above threshpld,
tp be cpmpared with y-E~ ' fpund' in the case pf
a homogeneous plasma. The growth rate increas-
es for increasing k approximately as 4 .

In order to discuss energy absorption we must
consider the effect of the turbulence which mill
produce an effective electron collision frequency
v, f&, modifying the width and maximum of the
resonance through 6 = v,«L/~~ when v,&z/~,
&(A.D/L) 'z. Assuming that a steady-state equilib-
rium maintains due to this increase in electron

Note from Fig. 2 that only modes with n &a/2

have a spatial extent greater than A. Substituting
the expression for d into Eq. (13), we find for the
growth rate Rep:-y and frequency shift Imp—:b, a
the equations

.7—

Q)2

5-
0=2

a=6

(b, ( )' 1 1 y'
+An —+—— +—=0,

2cvg v2 Ug U2 2&2 U2 Vg 0
I04 IO IO IO-I

where we have neglected the ion collision fre-
quency.

In Fig. 3 are plotted the growth rates for two
cases of interest for laser-pellet fusion. The
pellet scale length is taken to be 10 ' cm and the
electron temperature T, =10 keV. These growth

E
2

47t nTe

FIG. 8. Growth rate y as a function of incident field
strength. In the case of a Nd-glass laser we have taken
XD/L =2.2&10, and for a CO2 laser XD/L = 2.2 &10
Here and in Fig. 4 4 (7) has been set equal to unity.
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collision frequency, we find from Eq. (15) that

. 4, 3@ 3 &/4~f in (2 h L )- I/4(h )1/2
4mnr ' D

FIG. 4. z&/& as a function of pump strength for the
fi.rst few modes in the cases of C02 and Nd-glass laser-
pellet irradiation. The scale parameters used are the
same as those in Fig. 3.

i.e., between the turning points z, and z2, and
we include the kinetic energy of the plasma oscil-
lations as well as the field energy. Using Eq. (4)
we find the ratio of power absorbed to power in-
cident on the plasma cE,„'/2n to be

A. '=
(2m)

' arctan(z, /&)

which has a maximum value of —,
' when z, »b.

See Fig. 4.
Preliminary experiments by Wong' using a mi-

crowave source have shown the existence of elec-
tron-plasma and ion-acoustic waves propagating
parallel to the density gradient consistent with
the results of the present work.

One of the authors (R.B.W.) acknowledges help-
ful discussions with Professor F. F. Chen and

Professor C. F. Kennel which led to the present
investigation.

which, for the examples considered, is larger
than (XD/L)'" for a significant range of angles
of incidence. For the values of the parameters
used, and using the functional form of 4(v) from
Ref 4, w. e find v, tt/&d~ &(Ao/L)"' and y/uo, &0.1
for a range of angles of incidence 58= 10' (Nd

glass) and 58 = 15' (COz) when E,/47/nT = 10-'.
For larger pump fields this window increases ex-
tremely slowly,

58-(in[2(L/)in)"'(E'/4iinT)'"(2irk+) '"h)i. ]P"
because of the rapid decrease of 4 (w) for large r.
Following Kruer and Dawson, ' the power absorbed
is given by

P f v f f [E'(z)/4ii] dz

where the integration is to extend over the region
of space in which the decay waves are unstable,
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