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Non-Abelian Gauge Theories Of the Strong Interactions*
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A class of non-Abelian gauge theories of strong interactions is described, for which
parity and strangeness are automatically conserved, and for which the nonconservations
cf parity and strangeness produced by weak interactions are automatically of order c./
m+2 rather than of order o.'. When such theories are "asymptotically free, " the order-n
weak corrections to natural zeroth-order symmetries may be calculated ignoring all ef-
fects of strong interactions. Speculations are offered on a possible theory of quarks,

Recently Gross and Wilczek and Politzer have
made the exciting observation that non-Abelian
gauge theories can exhibit free-field asymptotic
behavior at large Euclidean momenta. ' However,
the physical application of this discovery raises
serious problems: (l) Why don't the weak inter-
actions produce parity and stangeness nonconser-
vations of order o.'? (This problem finds a natu-

ral solution when the strong interactions are de-
scribed by A. bettian gauge models, ' but not, to the
best of my knowledge, in non-Abelia. n models of
the "Berkeley" type. ') (2) Even with asymptotic
freedom, when can the strong interactions actual-
ly be neglected'? (3) Even if asymptotic freedom
explains the success of naive quark-model ca,lcu-
lations, why don't we see physical quarks7 This
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note will describe a class of non-Abelian gauge
models which provide a complete answer to (l),
a pa.rtial answer to (2), and a possible answer to
(3).

Consider a renormalizable gauge theory of the
strong, weak, and electromagnetic interactions
with the following properties: (A) The gauge
group is a direct product of a "strong" gauge
group G~ and a "weak" gauge group G~. The
coupling constants associated with G~ and G~ are
of order 1 and e, respectively. The spin--,' ha-
drons are non-neutral with respect to both G~ and

G~, but the generators of G~ all commute with
the generators of G~. That is, the quarks would
have to form a matrix, with weak and strong in-
teractions producing transitions along columns
and rows, respectively, as in the colored-quark'
or Pati-Salam' models. The leptons are neutral
under 6,. (B) The strong gauge group Gs isnon-
chixal. (C) There are various weakly coupled
spin-0 fields with very large vacuum expectation
values (-300 GeV), which break G~ and give the
associa. ted vector bosons large masses (-30 GeV)
and also produce or contribute to the zeroth-or-
der fermion mass matrix rn. However, these
spin-0 fields are neutral under G ~, so their vac-
uum expectation values do not contribute to the
mass of the strongly interacting neutral vector
bosons.

To avoid massless strongly interacting gauge
bosons, it is natural to suppose that G~ is also
spontaneously broken. We might assume that
this occurs through the vacuum expectation val-
ues of various strongly interacting scalar fields,
but it appears' that the introduction of these
fields would prevent a free-field asymptotic be-
havior. Alternatively, we might assume that
there are no strongly interacting spin-0 fields,
but that G~ is broken dynamically. ' However,
this still leaves the question of why observed
hadron states should belong to simple G~ multi-
plets, like the color singlets of Ref. 4.

There is one other possible alternative: that

G~ is rat broken, so that the G~ gauge bosons
do have zero mass, and the quarks are "color"
or column" degenerate. On the basis of a pre-
liminary analysis, it appears that the infrared
divergences in such a theory could make the rate
for production of any number of G~-non-neutral
particles in a collision of G~-neutral particles
vanish. The world would than consist of compos-
ite G~ singlets, like ordinary hadrons, which are
not affected by these infrared divergences; the
G~-non-neutral hadrons, such as quarks and

massless vector bosons, although present in
Feynman diagrams, Wilson expansions, etc. ,
would never appear as physical particles. This
conjecture is under further study.

Leaving aside scalar fields, any theory gov-
erned by assumptions (A), (B), and (C) will have
an effective "zeroth-order" strong-interaction
Lagrangian of the form

&s~.o g
= 4~—yr"D„0 —4~

'@~).»-.„.»"; (&)

where g and D„g are the spin=,' field multiplet
and its 6~-gauge-covariant derivative; I',„, is
the G ~-covariant gauge-field-strength term; and

Z&, m, and S~ are G~-invariant matrices, the
first two of which may involve both the y, and 1
Dirac matrices. Because Z~ and nz commute
with the generators of G~, we can use Schur's
lemma to redefine the fermion fields so that S

&

becomes unity and m becomes real, diagonal,
and y, free, while the generators of Gz remain
y, free and commute with m. Once we define the
fermion fields in this way, the theory automati-
cally conserves parity, if we assign positive par-
ity to all spin-& fields and identify all G~ gauge
fields as polar vectors. In addition, any quantum
number such as strangeness, charm, etc., which
can be expressed in terms of the number of ele-
mentary fermions, summing over "color, " is
also automatically conserved. (The same is true
if we introduce strongly interacting spin-0 fields,
provided they belong to representations of G~
which prohibit Yukawa couplings to the fermions.
All spin-0 fields can then be assigned positive
parity and zero strangeness, charm, etc.) Also,
it will often happen' that, for a wide range of
parameters in the original Lagrangian, the spon-
taneous breakdown of G~ leaves some of the ele-
ments of the diagonalized fermion mass matrix
equal or zero. This equality will then extend to
all colors, and the strong interactions will have
a "natural" zeroth-order unitary or chiral sym-
metry, ' in addition to the conservation of parity,
strangeness, etc.

Now let us consider the effect of second-order
weak and electromagnetic interactions which
break these symmetries. Just as in the neutral
vector gluon model, ' it is found after canceling
gauge-dependent terms that the corrections to a
general hadronic S-matrix element fall into three
classes: tadpolelike terms, photon terms, and

heavy vector boson exchange terms. The tadpole-
like terms just amount to a G~-invariant correc-
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where

x Jd'kS„s~'(k)(k'+ p, ')~s ', (2)

S„, '(&) =--'i(2 ) '

x Jd'x(F~a(Z„„(x)J,&(y))~1&e"~"-'~. (3)

Here the J „are the currents of Gt, formed
from the spin-& hadron fields, and LL{,

' is the G~-
vector boson mass matrix, except that the photon
is here given an arbitrary large mass A, to com-
pensate for a regulator mass A used in evaluating
the true photonic term. ' The only terms in (2)
that are of order n rather than n(m~' are those
arising fromterm, s in S(k) which decrease no
faster than k ~ as k-. Such terms m3y be
picked out from the Wilson operator-product ex-
pansion' of the direction-averaged matrix ele-
ment:

jdo,„z„,~'(t ), „P„(F~O„II-)-U„,'"'(~k'). (4)

The asymptotic behavior of U„s "
(K) in perturba-

tlon theory ls

U„s "'(K)=O(K' 'Kxpowers of lnK),

where d„ is the "naive" dimensionality of the op-
erator O~. Hence the only terms that contribute
to 5S» in order n are those with exponent 2 —d~
not less than —2. The change in the S matrix is
therefore equivalent to a change in the strong-in-
teraction Lagrangian:

.52 =+~OK Jo U~s (K)(K + tL )~s K dK,

the sum extending only over "renormalizable" op-
erators O~, with d~ «4. But these operators are
all Lorentz invariant, because we have averaged
over momentum-space directions in (4), and they
are all G ~-gauge invariant, because the currents
J„„areneutral under G~. Hence the order-z cor-
rection term (6) must be of precisely the same
form as the original zeroth-order Lagrangian
(1.), and so any order-n violation of parity and
strangeness conservation introduced by the weak
interactions can be eliminated by redefining the
fermion fields as before. The only symmetry
breaking remaining after this redefinition will
take the form of shifts in the fermion masses,

tion to the matrix m in (l), and therefore any par-
ity or strangeness nonconservation they introduce
can be transformed away as before. The photon
terms clearly cannot change parity or strange-
ness. The remaining terms are of the form

6S„=(2~)'6'(P -~,)

which can break the other natural zeroth-order
symmetries' mentioned above. On the other hand,
the truly weak corrections of order o./m~' cannot
be expressed in terms of renormalizable correc-
tions to the Lagrangian, so we expect both parity
and strangeness conservation to be violated by
such nonleptonic truly weak interactions.

Nom, what of the actual calculation of M'7 Af-
ter symmetric integration, the U~" ~ functions
that contribute to (6) all have the naive asymptot-
ic behavior K ', so the integral (6) appears loga-
rithmically divergent. However, the trace U„„ is
G~ invariant, so it cannot contribute to the cor-
rections to natural zeroth-order symmetries,
and thus all logarithmic divergences cancel. ' If
we assume that the "free-field" asymptotic be-
havior sets in at K &~, then we can evaluate (6)
using the asymptotic formula'

U~s '(K)- K 'B~s "' exp(J'yK(a')da'/a'3 (7)

where B„B" is a constant, independent of the
strong-interaction coupling constant; yK(a) is an
anomalous dimension; and the lower limit a de-
pends on the renormalization prescription used
to define the operator 0~. In general, y~ is not
zero, so "asymptotic freedom" does not say the
strong interactions can be ignored in calculating
U " . However, yN is in fact zero for the func-
tions that interest us here. By the same argu-
ments as those used in Ref. 2, we can conclude
that the only 0„in (6) that matters is the bilinear
product p„g . This does have a nonzero anoma, -
lous dimension y&&, but we are interested here
in the gonleading terms in the corresponding V
function of order z ', and the presence of a fer-
mion mass factor in these nonleading terms in-
troduces a term -y&& which cancels the previous
term. (Details will be published elsewhere )Us-.
ing (7) in (6), our result then is that the terms of
order n in 6S» are the same as would be pro-
duced by a change in the effective strong-inter-
action Lagrangian

W =-, PB sg(in', ")„8,
where (B„&)„ is the B matrix for the operator

This is independent of the strong-interac-
tion coupling constants, and therefore must be
the same as would be given by a one-loop pertur-
bation calculation. The same is trivially true of
the tadpole terms, so, apart from the purely
photon terms, all corrections to the effective
Iagxangian axe correctly given to order n by
neglecting al/ effects of strong interactions. Qf
course, we must not use perturbation theory to
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calculate any physical hadron mass or matrix
element, but only to calculate 5g; the result
must then be used as an input to current-algebra'
or parton-model" calculations of physical quan-
tities.
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By using exact inclusive sum rules we infer that the growth with energy of the total pp
cross section is connected with the mechanism which is responsible for the appearance
of a sharp peak near the kinematical boundary in the process p+p —p+ anything. We dis-
cuss this mechanism in the context of Hegge models and suggest tests of this idea which
involve X+p scattering experiments.

The apparent rise of the total cross section for
pp scattering at CERN intersecting-storage-ring
(ISR) energies" has renewed the interest in the
asymptotic behavior of cross sections. In this
paper, we connect, in a model-independent way,
the increase of o»(s) with the appearance of a
peak in the inclusive proton spectrum near lx ]

=1. This provides a mechanism which explains
why and at nrhat energy the increase in g»(s) oc-
curs. It is, of course, possible to construct
models' of various degrees of plausibility which
can fit the observed behavior of the total cross
section. According to our observation, viable
models should explain simultaneously both the
rise in the total cross section and the peak near

lx I
= i.

Let us denote the inclusive cross section for
the process a+ b - c+X by

&cdaat fd &c=faa

Then we can write the sum rule which expresses
the conservation of energy, ' in the c.m. system,
as

Q,f(d'P, /E, )E,f„'=Wso„(s).

In the above the dominant contributions arise
from the fragmentation regions of a and b since
the weighting factor of E, effectively suppresses
the pionization region.

We remark that if the f,~' show limiting behav-


