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A classical Heisenberg Hamiltonian, to which is added single-ion anisotropy and anti-
symmetric Dzialoshinsky-Moriya interactions is studied with use of Wilson theory. The
phase diagram is obtained; it consists of ferromagnetic, spiral, and ferromagnetic-spi-
ral regions, with critical exponents that are Ising-like, xy-like, and Heisenberg-like, re-
spectively. These results lead to the conclusion that breaking of exchange symmetry
does not change the nature of the phase transition. Crossover behavior is also discussed.

Consider a system composed of three-dimen-
sional classical spins situated on a d-dimensional
“hypercubical” lattice and described by the model
Hamiltonian 3C =3C, +3C,+3C,. Here

5,==d % §,-§;
<id)
==dJ 25 (SixS;x+SiySiy+SixSis), (1a)

(id)
where spins §;=(S;,, S, S;,) and §; interact
only if lattice sites 7, j are nearest neighbors,
and the energy of a pair of parallel spins is — .
The second term in the Hamiltonian is the single-
ion anisotropy term, presumably due to interac-
tions such as crystal fields:

N
H,== 1D Y SR (1b)
i=1

The third term is a Dzialoshinski- Moriya inter-
action,!

¥,=A4,27'(S;,S
{ij)

iy "ijsiy)’ (lc)

where the prime on the summation means that it
is restricted to nearest-neighbor pairs of spins
that are on adjacent “hyperplanes” (this means
T;-T;=Z, where 2 is a nearest-neighbor vector
in the 2 lattice direction). Although the most
general Dzialoshinski-Moriya interaction is A
'§i>< §j, we have set KEAS;S in (1c¢) without loss
of generality.

The impetus for this study is as follows:

(1) There are many magnetic materials? that
display complex helical spin configurations in
their ordered states, although there exists little
analysis beyond mean-field theory. The Hamil-
tonian 3C is capable of describing systems with
helical ordering [cf. Fig. 1].

(2) The antisymmetric Dzialoshinski-Moriya
interaction is of interest in its own right. From
spin-orbit coupling theory, it is known to be the

cause of “weak” ferromagnetism in certain ma-
terials (e.g., hematite,® a-Fe,0,). Moreover,

in a recent Letter, Melcher® has shown that the
spin-wave dispersion relation includes a linear
term, w(q)=aq +bg? where a and b are functions
of J, D, and A;, and a=0 unless A, +0, leading
one to suspect possible effects of nonzero A, on
thermodynamic properties in general and on
critical properties in particular,

(3) The interaction ¢, provides an opportunity
to test the effect of breaking exchange symmetry
on critical properties,®* since the antisymmetric
interaction A- §i><§j changes sign upon inter-
change of §,~ and §j, whereas previously studied
models of critical behavior are symmetric under
this interchange.

In this work I study the critical behavior of
¥ using the Wilson renormalization group ap-

D

FIG. 1. Pictoral representation of the phase diagram
of the Hamiltonian ¥=3C; +3¢, +3C;. (a), (b), (¢) The or-
dered states for the cases (i) D>A44% (ii) D<A44% and
(iii) D=/Ts2, respectively. (d) The critical behavior as
obtained from the € expansion.
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proach,” 1 In the continuum limit, 3Cbecomes
3¢ = [dPr {5J(VS,+ VS, + VS, VS, + VS, VS,) — dJ| 8 - 1D(S,)? + A,[S, (8, /82) - S, (85, /82)] }, (2)

where the T dependence of S, has been suppressed. The reduced Hamiltonian 3¢ is obtained by trans-
forming (2) into the momentum representation,

Kr=- DD el Pqu@, o &, HSUDSHE) ~u, [ar | S, )

where 5(§) = V"2 [y exp(i§- )S(¥), and a, B run over the components x,¥, 2 of the three-dimensional
classical spins. The matrix elements u, appearing in (3) are zero when q+q’+0, while if §+q’=0,
uz(q, a; q B) are glven by the appropriate element of the following matrix (rows are ordered by g, x

4,v; 4,2; —4,x; —4,y; —3q,2; and the columns similarly):
o 0 0 @+p 2iAg, 0 ]
0 0 0 -2iA.q, ¢*+p 0
0 0 0 0 0 @-D+p
2 7 (4
¢+p -2iAg, 0 0 0 0
24,9, ¢*+p 0 0 0 0
| 0 0 @ -D+p 0 0 0 .J

Here I have introduced the notation D=D/J, A,= A,/J, and p=BkT/J - 2d, where B is a dimension-
less positive number, % is the Boltzmann constant, and T is the temperature.

First consider the Gaussian model, for which #,=0. The two off-diagonal submatrices in (4) may be
diagonalized in the representation of $*(g), S°(§), and $*(§), where S*(§) =2"Y2[$*(§) +iS*(J)], with

the result
Sep(uy=0) =~ % [@q{(q? + 2A,q, +p)S* @ [SHP]*
+(q* -

qu+ S~ (*)[S (.’)]

+(¢* = D + p) S [SHPI*}. (5)

Here the asterisk denotes complex conjugate. The nonvanishing spin-spin correlation functions (i.e.,

the Gaussian propagators) are, from (5),

(@ =(S*@[S" @0 = [(G+ 4,22 +p - A.2] Y,
r "(ﬁ) = (S'(Q[S'(ﬁ)]*) = [(ﬁ - ZszA)z +p- Zgz]q’
(@ =(S*(@[S*([@)*) =(¢*-D+p) "

Note that at high temperature (p>>1), all prop-
agators are finite and the system is disordered.
To study the behavior near T,, we consider
three different situations: (i) D>A,% As T (and
hence p) decreases, I'“*({=0) is the first prop-
agator of (6) to diverge—it diverges at p=D,
while all other propagators are still finite at
this temperature. Therefore the order param-
eter is $*(q=0) and the ordered state is given
in Fig. 1(a). (ii) D<A In this case, as we
lower the temperature the propagators I'**(-A4,z2)
and I'""(4,2) diverge first, at p=A,%. There are
two independent order parameters responsible
for the transition, viz., S*(-4,%) and S™(4,3).
Note that although they are indistinguishable
statically [Fig. 1(b)], they are independent dy-
namically (and mathematically). Note also that
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(6a)
(6b)
(6c)

|7the conventional q=0 “susceptibilities,” I*(q
=0), do not diverge. However, I'**(§) and I*(g)
are both diverging at §=+A4,2. (iii) D=A22 Here
all three propagators diverge simultaneously at
p=D=Ap2 and the order parameter may be ei-
ther S*(4=0), S*(q=-4,8), or ST(§=4.%) [cf.
Fig. 1(c)].

Next consider the more general situation with
u,#0. The critical behavior of (3) may be ob-
tained by using exact recurrsion relations in d
=4 - € dimensions or by using the Feynman dia-
gram expansion.””® We find that with suitable
choices of order parameters and diverging quan-
tities (cf. preceding paragraph), the critical be-
havior may again be categorized as above, with
cases (i), (ii), and (iii) corresponding, respec-
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tively, to Ising-like, xy-like, and Heisenberg-
like critical behavior [cf. the phase diagram of
Fig. 1(d)].

This result is rendered plausible by the follow-
ing analogy between our Hamiltonian 3¢=3C, +3C,
+3C; and the conventional Ising, xy, and Heisen-
berg systems. For case (i) there is only one
order parameter, S$*(0), whose fluctuation di-
verges at T,, while the same is true for the Is-
ing model (or the anisotropic Heisenberg model
with J,>J,,J,). Similarly, for case (ii) there
are two independent order parameters S*(-4.2)
and S™(4,2), and the same is true [with different
order parameters, S*(0), S¥(0)] for the xy model
(or anisotropic Heisenberg model with J,,:Jy>J,).
Finally, for case (iii) there are three independent
order parameters [S*(0), S*(-A4,2), and S™(4.2)]
just as for the isotropic Heisenberg mcdel [S*(0),
$(0), and S*(0)]. The exact recurrsion relation
for p and u, (and hence the critical exponents)
for our system in d=4 - € dimensions may be
obtained in analogy with conventional systems,
namely, by iterations which integrate out half
of the variables §(6). However, the integration
ranges in { space are now different for the three ,

OW = 33 [8;,5;,— HS1xSsx+Si,S;,)] + 1A, (S,, S

(ij) (ij)

with crossover exponent given by the n =3 value
of

- n (n® +24n* +68n) ,
¢ 1+2(n+8)€+ 4(n+8)°
+0(€d). (7o)

The second symmetrized operator is

6(2) = Z;, (Sixs.iy - si:vS.ix)
(ij)

+Zaf)[s(s +1)-5,.2], (8a)
i=1

with crossover exponent given by the n =3 value
of

(2)=§+ 3n+2 et 3n3+72n2+164n+104€2
¢ 2 4(n+8) 8(n +8)3
+0(€%. (8b)

Note that the operators ©(¥ and ©® are func-
tions of D=A4,%, which is the position of the criti-
cal line about which the operators are perturbing.
On the other hand, the crossover exponents are
independent of D, At D=A,=0, the operator @V

independent variables S*(@), S™(§), and S*(9).
For example, the S*(q) are now integrated over
the range 12 [{+4,4| >4, instead of 12 |§|=31.
(4, is assumed to be much smaller than the cut-
off momentum.)

The phase diagram of 3C is given in Fig. 1(d).
It is gratifying to note that the condition D <42
(i.e., DJ <A.?) is exactly the condition that de-
termines the instability of the ferromagnetic
ground state—cf. Eq. (13) of Ref. 4. The critical
behavior for the special case A,=0 [the y axis of
Fig. 1(d)] is also consistent with previous work
(cf. Ref. 5). Furthermore, for D=0 and A,#0
[the x axis of Fig. 1(d)], the xy-like behavior is
plausible, since the interaction Hamiltonian JC,
+JC, possess rotational symmetry about the 2
direction of spin space (although it is neither
symmetric nor antisymmetric under exchange of
T;,T; in the lattice space). This observation
may serve as evidence that exchange symmetry
is not one of the “basic symmetries” that affect
the nature of critical behavior.

Consider finally the crossover behavior.
We find two symmetrized anisotropy parameters
about the Heisenberg fixed points (D=4,%. The
first is

11-13

D
-S,. S 5

iy jx) -

Esizz’ (73)

=1

, reduces to one of the operators previously con-

sidered for this case'? (and the crossover expo-
nent is the same), while the second operator, 0@,
is just the pure Dzialoshinski-Moriya term.

In summary, then, we have studied a model
Hamiltonian which readily yielded the helical
ordered state. The order parameters of the
phase transition and phase diagram were found.
Our results reduce to previous results? in spe-
cial cases. The antisymmetric term K-g,-x§j is
shown to enchance the fluctuation of the spin com-
ponents in the plane perpendicular to A. How-
ever, the breaking of exchange symmetry does
not change the nature of the phase transition.
Finally, the crossover behavior was also studied.

I conclude with the following remarks: (1) The
critical behavior of helically ordered materials
has yet to be studied experimentally. Guided by
our results, one may make some calculated con-
jectures about the critical behavior of these ma-
terials, even though the helically ordered state
may not result from the Dzialoshinski-Moriya
interaction. For example, the ordered state of
MnAu, is known' to be the same as in Fig. 1(b),
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with a turn angle corresponding to GO =(0.1 f&'l)z‘.
I suspect that in the critical region, I'**(q,, T)
~(T-7T,) 7 and Cy~(T - T,)™* with y and « giv-
en by the d=3 value of the xy model. These spec-
ulations may be tested experimentally. (2) Unless
A, could be adjusted experimentally, I am unable
to make any quantitative prediction about the
crossover behavior of materials which possess
Dzialoshinski-Moriya interaction. The cross-
over exponents, in particular ¢(® may, how-
ever, be tested numerically.

I am indebted to D. Lambeth and Professor
H. E. Stanley for helpful comments on the man-
uscript.
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The effects of fluctuations on the Peierls transition in one dimension are calculated by

taking a functional average over variations in the order parameter.

It is found that the

transition is suppressed to a temperature of approximately one quarter of the mean-field
transition but remains fairly sharp. The coherence length and density of states are cal-
culated as a function of temperature, and brief comparison is made to experimental

systems.

It has long been known that a one-dimensional
metal is inherently unstable with respect to
charge or spin-density waves.!™ In recent years
a wide range of both inorganic and organic com-
pounds which have characteristic one-dimension-
al metallic behavior have been discovered and ex-
tensively studied.*® Theoretical calculations to
date have been carried out only within a mean-
field—theory description, although it is well
known that fluctuation effects are very important
in one-dimensional systems. In this Letter we
report theoretical calculations incorporating fluc-
tuation effects on the Peierls transition in a one-
dimensional metal.

We consider a model with noninteracting elec-
trons in a linear chain coupled to phonons:

H :Z; EDCPUTCPO +Z> wabaTba
»0 q

+(‘/—L)-IZ> Z‘,g(q)c‘,+qucpo(bq+b_qT), (1)

50 q
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where c!,oT and qu are creation operators for a
Bloch state and longitudinal phonon, respectively,
with energies ¢, and w,, respectively. Because
a Fermi surface in one dimension is a point, it
is, of necessity, a perfect nesting Fermi surface
causing an instability in the lattice with wave
vector 2k, where ky (=7N/2L) is the Fermi
wave vector. A description of this instability
within mean-field theory for the case where &
is incommensurate with the underlying lattice
periodicity (n/a) has been given by Fr&hich,? Ku-
per,” and Rice and Strassler.® The mathematical
structure of the theory closely parallels that of
the BCS theory of superconductivity. The effects
of fluctuations on phase transitions in one dimen-
sion have been studied by many authors. It is
possible to treat the problem accurately by per-
forming a functional integral over all possible
fluctuations described by a Landau expansion of
the free energy. Recently Scalapino, Sears, and



