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K, especially in view of the fact that the antimony
compounds we are concerned with in this Letter
are not polymers. ' Furthermore the two values
of e thus deduced differ considerably, which re-
veals the weakness of the GEE analysis.

(4) We notice that the quadrupole coupling con-
stant yielded by the TI analysis is smaller by
about 3% than that obtained from a SOI, analysis
(Table I). The TI value for e'q, Q at 77 K is
—20.89(40) mm/sec. With the usual temperature
dependence of e'q, Q observed in such compounds,
these results are in good agreement with the nu-
clear-quadrupole-resonance value of 20.02 mm/
sec reported at 300 K.' The ratio of the nuclear
quadrupole moments of the —,

' and the —,
"' levels in

'"Sb agrees well with the previous determination
(1.34 + 0.01).'

In conclusion we would like to express our con-
cern regarding the analysis of Mossbauer spec-
tra without accounting for T„when the compo-
nents are unresolved. In addition to '"Sb, simi-
lar situations also arise in '"I and '"Eu. An
analysis to correct for the exponential absorp-
tion would help to report more reliable hyperfine
interaction parameters" and avoid predicting
physically unreasonable effects.

We thank Ludmann-Obier for providing us with
the samples.

'V. I. Goldanskii, E. F. Makarov, and V. V. Khrapov,
Phys. Lett. 3, 344 (1963); S. V. Kariagln, Dokl. Akad.
Nauk SSSB 148, 1102 (1963); I. P. Suzdalev and E. F.
Makarov, in Proceedings of the Conference on the Ap-
p/ication of the Mossbauer Effect, Tihany, Hungary,
tune 1969, edited by I. Dezsi (Akademiai Kiado, Buda-
pest, 1971), p. 201.

J. G. Stevens and S. L. Buby, Phys. Lett. 32A, 91
(197O).

S. Margulies and J. B. Ehrman, Nucl. Instrum. Meth-
ods 12, 131 (1961).

J. G. Stevens and L. H. Bowen, in Mossbauer Effect
Methodology, edited by I. J. Gruverman (Plenum, Neer
York, 1970), Vol. 5, p. 27; G. G. Long, J. G. Stevens,
B.J. Tullbane, and L. H. Bowen, J. Amer. Chem. Soc.
92, 423O (197O).

5M. Pasternak and T. Sonnino, J. Chem. Phys. 48,
2004 (1968).

6, K, Shenoy and J. M. Friedt, to be published.
H. D. Pfannes and U. Gonser, Appl. Phys. 1, 93

(1973).
8B. H. Herber and S. Chandra, J. Chem. Phys. 52,

6O45 (197O) .
T. B. Brill and G. G. Long, Inorg. Chem. 9, 1980

(197O).
It appears that in a similar analysis in Bef. 2, dif-

ferent angular distributions of the &~= 0 transitions
were not considered,

'The time required for the fitting is of the order of
15 min for a spectrum with 200 data points.

' E. Gerdau, W. Bath, and H. Winkler, Z. Phys. 257,
29 (1972).

Observation of Self-Steepening of Optical Pulses with Possible Shock Formation
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Near-resonant light pulses were steepened by passage through Bb vapor. The rise
time changed from typically 4 nsec to less than 1 nsec, and complicated envelopes devel-
oped. The self-steepening, well described by adiabatic following, results from (i) an in-
tensity-dependent pulse velocity, (ii) self-phase modulation combined with strong group-
velocity dispersion. Numerical integration gives quantitative agreement with observa-
tions and indicates shock formation on the leading edge.

The possibility of observing self-steepening of
optical pulses and the formation of shocks has
been extensively discussed. ' ' An early problem
was that of pulse propagation in a medium with
an intensity-dependent refractive index but no
dispersion. " The resulting pulse reshaping is
entirely caused by the intensity-dependent pulse
velocity. This steepening effect has remained un-
observed because either the propagation distances
and input powers required are unattainable, or

dispersion cannot be rightly neglected. With dis-
persion included in the analysis, ""self-steepen-
ing was predicted to occur over much shorter dis-
tances. It is then mainly caused by self-phase
modulation, which modifies the instantaneous fre-
quency along the pulse, thereby producing re-
shaping due to group-velocity dispersion. Even
though the conditions required to observe this
type of self-steepening are more favorable, ex-
perimental verification has not been obtained.
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FIG. l. Input pulses (300 W/Iarge division x 5 nsec/
large division) to the &00-cm Rb cell and the resulting
output (5 nsec/large division). The relative intensity
scale is the same for all the output pulses. The detec-
tors were ITT biplanar photodiodes; the input was ob-
served with a Tektronix 519 oscilloscope, which trig-
gered a Tektronix 7904 oscilloscope monitoring the out-
put. (a) (vp —v)/c=0. 24 cm ~, where vp is the center
frequency of the Rb line (7948 A) and v is the input fre-
q«ncy. (b) (v, —v)/c=0. 20 cm '. (c) (vp v)/c=0. 23
cm ~. (d)(vp- v)/c=0. 78 cm '.

We report what is believed to be the first di-
rect observation of self-steepening of optical
pulses caused by a nonlinear electric susceptibil-
ity. Our results are different in kind from pulse
compression obtained for self-induced transpar-
ency with converging beams. '"" The experiment
used the strong, near-resonant nonlinearity of
an alkali vapor. ""'"This nonlinearity is many
orders of magnitude larger than that of the usual-
ly discussed Kerr liquids. Excellent agreement
is obtained between experiment and theory, The
latter includes the related effects of intensity-
dependent pulse velocity, self-phase modulation,
and linear plus nonlinear dispersion.

Short pulses of narrow-line, circularly polar-
ized, dye-laser light on the low-frequency side
of the Zeeman-split 'P», resonance line of Hb

(7948 A) were passed through dilute Rb vapor.
Figure 1 shows examples of reshaping; self-
steepening is manifested by an abrupt discontinu-
ity on the leading edge of the output pulse [Figs.
l(a) and 1(b)]. The observed 1-nsec rise time is
that of the detection system. More intense, or
more nearly resonant, pulses develop compli-
cated envelopes with abrupt rises and multiple

peaks [Fig. 1(c)]. The pulse of Fig. 1(d) is far
off resonance, shows little reshaping or attenua-
tion, and propagates with a group velocity of
0.8c. Comparing the pulses of Fig. 1(a)-1(c)with
Fig. 1(d), one determines their velocity sc/4
and their attenuation s 30/g.

The experimental arrangement, described else-
where, ' is modified as follows. The dye-laser
beam illuminates a 1-mm aperture and travels to
a f= —103 cm lens positioned 525 cm away from
the aperture; 20 cm beyond the lens the pulse
enters the cell. The beam profile at the lens is
the Fraunhofer diffraction pattern of the aperture.
The negative lens changes the radius of the spher-
ical wave from 525 to 86 cm at the lens posi-
tion. This reduces self-defocusing" to a negligi-
ble value; no change in the beam profile could be
observed. An additional Fabry-Perot interfer-
ometer with a resolution of 0.01 cm ' monitors
the spectrum of the reshaped pulse. Finally, the
output window of the cell is imaged with unit mag-
nification on a 3-mm aperture placed in front of
the output photodiode. As previously, the Rb cell
is in an axial magnetic field of about 10 ko; the
cell temperature is 120 C, corresponding to an
atomic number density of 1.8 &&10"/cm'. The
linewidth of the input light is 0.003 cm '. The
photodiodes are calibrated against a TRG thermo-
pile.

For the regime studied here the nonlinear re-
sponse is well described by adiabatic following, "'"
in which the pseudomoments of the atoms re-
main closely aligned with the changing effective
field of the pulse. Since the group velocity is ex-
ceptionally dispersive it is essential to account
for the change in instantaneous frequency caused
by self-phase modulation. The Bloch equations
describing a two-level system of resonant fre-
quency co, in a frame rotating at the instantaneous
field frequency ~+ B y/Bt are well known. The
equations are written in terms of the Babi pre-
cession angular frequency 8 = W2p»E/8 and the
angular frequency offset y = pc, —~ —Bcp/Bt. Here
E and y are the slowly varying field envelope and
phase, respectively; p» is the magnitude of the
0 dipole matrix element. The in-phase and out-
of-phase components of the polarization are u
and e, respectively; W is the atomic energy den-
sity. " Within the adiabatic-following approxima-
tion these quantities are obtained from the vector
model. ' Formally the approximation consists in
setting 0 t/B t = 0 in the equation Bv/0 t = -uy —W2

&&P„SW/(S~, ). An expression for u results which
is used in Bu/Bt= vy —u/T, to give v. The small-
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ness of the resulting Bv/Bf compared to uy justi-
fies the procedure. In the absence of relaxation
the equation BW/Bt=vSh&u, /(W2p») is then inte-
grated exactly, giving W= —,h&—u,N, (1+S'/y ) '',
where N, is the effective atomic number density.
With moderate relaxation this relation holds ap-
proximately.

These results are introduced in the coupled,
reduced wave equations"

c BZ/Bz + BE/8f = —2'(dv,

c 8 p/Bz+ 8 y/B t = —2wuxu/~.

(1a)

(1b)

Equation (1a) and the time partial derivative of
(lb) are recast in terms of S and y. The final
equations are written in terms of an initial con-
stant offset y = 5, a coupling strength h' = 2mN, ~P»'/
(56'), a normalized distance g =a/c, and a local
time v= f —z/v, . The group velocity at low inten-
sities, ' valid for S and y, is v, =c/(1+8) pro-
vided 5 «+. With T, = ~ the equations are

BS/8 g =M BS/a a+ NS By/B7,

ay/a) =May/Br —NS BS/BY,

(2a)

where M=8[1 —(5/y)'(1+ S'/y') '~] and N=S&'y '
&&(1+ S'/y') '~'. The terms in M account for the
intensity and frequency dependences of the pulse
velocity. These constitute one steepening mech-
anism. The term in N in Eq. (2a) describes non-
linear dispersion. For small S it becomes iden-
tical to the usual result of linear dispersion the-
ory. The term in N in Eq. (2b) describes self-
phase modulation. The combination of dispersion
and self-phase modulation is another steepening
mechanism. Under present experimental condi-
tions both mechanisms contribute to the final
pulse shape, the second being the stronger. The
self-steepening is identical on both sides of the
resonance line since (2) is unchanged when y
changes sign.

The discriminant of this system of coupled par-
tial differential equations is 6 = —2M —4(M'+ S'N'),
which is usually negative. The system is there-
fore elliptic, though the boundary conditions
(specification of S and y for all v. at the cell en-
trance) are appropriate to a hyperbolic problem.
Such improperly posed elliptic problems lead to
singular solutions. '" Both analytical results'"
and numerical integration show that irregularities
in the input grow rapidly, as demonstrated by
Figs. 1(a) and 1(c). The input pulse [Fig. 1(c)]
has slightly more structure, is slightly closer to
the line, and is 20% more powerful than the in-
put 1(a). These small differences cause the ex-

—S/(g, + g) -co.S/2,

BI'/Bf=m BI /Bw —nS B S/B7,

(3a)

(3b)

where m and n are sums over ten terms similar
to I and N, &, is the time of travel from the cen-
ter of the spherical wave to the cell entrance at
&=0, and

a = 2(cr )-'Q S Z 'y -'(1+ S'/ ') - ~

is the nonlinear absorption coefficient.
Figure 2 shows the result of applying Eqs. (3)

to the input pulse of Fig. 1(a). The stability of
the numerical integration requires that the input
be a function with continuous derivatives. This
pulse fits a ninth-degree polynomial with a rela-
tive rms deviation of 0.002. For comparison to
the output (solid line), the input pulse (dashed
line) has been drawn as if it had gone through the
cell at the group velocity subject only to linear
absorption and diffraction. With this normaliza-
tion, and except for the intensity dependence of

treme difference between the outputs, where tiny
features on the input 1(c) are changed to dramatic
structure.

As a steep front forms, the adiabatic-following
approximation will break down and additional
terms are required to describe the polarization.
These determine the sharpness of the front and
its evolution. Such terms should also allow for
steady-state solutions S = S (v —af) and y = y(v
—a&). Equations (2) do not admit such solutions.
In particular the 2psech pulses of self-induced
transparency do not, strictly speaking, satisfy
the equations. However, it has been found both
experimentally and numerically that any pulse
for which S is much smaller than 6 experiences
no measureable reshaping or frequency modula-
tion over the propagation distances considered
here. Off-resonance sech pulses as described
by Diels and Hahn" evolve over much longer dis-
tances than a': e of interest in the present experi-
ment. As seen below, Eqs. (2) describe appro-
priately the strong reshaping of pulses for which
S approaches 5.

In order to compare theory and experiment it
is necessary to account for the ten hyperfine com-
ponents (v„,i=1 to 10) of the Rb line, for the
diffraction of the spherical wave, and for the ab-
sorption caused by T,. One defines ten coupling
strengths S,, ten offsets y;=I"+0;, where I'=
—Bcp/Bt, and the group velocity v, =c/(1++;8;).
Equations (2) are replaced by

BS/ag=m BS/ar+nS al'/ar
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the output window; the integration of (3) cannot
be continued beyond this point. The fact that a
rise-time-limited leading edge is still obtained
at the output strongly suggests that a shock trav-
eled the remaining 30 cm. By shock we mean an
extremely sharp front propagating with little re-
shaping, because of dynamic balance between the
steepening mechanisms of.Eqs. (3) and a smooth-
ing mechanism, not taken into account in (3) and
operating only during extremely rapid variations
of the field. This will be the subject of further
investigations.

The authors would like to acknowledge useful
discussions with P. D. Gerber, R. Landauer, and
Michael M. T. Loy. The skilled technical assis-
tance of R. J. Bennett was essential to this work.

FIG. 2. The output pulse {dots) of Fig. 1(a) compared
with the calculated pulse (solid line} and the normalized
input (dashed line) . (b) Calculated self-phase modulation
I'=By/8t in 10 ~ cm t.

n, the energies of the input and output pulses are
equal. In particular the output peak is higher than
the input because of the time compression, in
good agreement with the calibration deduced from
Fig. 1(d). The calculated output agrees remark
ably well with the measured points. The integra-
tion indicates that the leading edge of the pulse
was still steepening at the end of the cell. Fig-
ure 2(b) shows that the predicted self-phase mod-
ulation is proportional to the time derivative of
8' in conformity with (3b). Its extent is of the
order of the resolution of the output interfero-
meter, and indeed broadening could not be clear-
ly observed. All parameters of the calculation
are experimentally measured. The input power
was adjusted to 170 W, while the measured value
was 200 W; this is within the accuracy of the cal-
ibration. The adjusted power corresponds to a
peak input intensity of 500 W/cm', a pulse area"
= 40', and a maximum 6 = 0.06 cm '. The excel-
lent agreement between experiment and theory
for this and other similar pulses shows that the
adiabatic -following approximation is valid during
reshaping.

In Fig. 1(b) the measured 1-nsec output rise
time is that of the oscilloscope. Some spectral
broadening mostly to the high-frequency side, as
predicted, was observed. Numerical integration
of this pulse produces a steep front 30 cm before
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