When the effects of the D state are included, the resulting analyzing powers agree well with the data. The agreement of the DWBA(S+D) calculations with the measurements is generally best when the spin-orbit potentials make a small contribution to the tensor analyzing powers (for sub-Coulomb transition, for the $l_n = 0$ transition, and for T_{21} for all transitions). This suggests that the less accurate agreement in other cases may result from the use of incorrect potentials, rather than from incorrect treatment of the D state. Other possible sources of error in the calculations arise from the neglect of tensor forces in the deuteron optical-model potential,¹⁶ and from calculational errors resulting from the approximation method used.9

The authors wish to thank Dr. R. C. Johnson for making available the DWBA computer code which provided the calculations contained in this Letter.

*Now at Radiological Research Accelerator Facility, Brookhaven National Laboratory, Upton, N.Y. 11973.

†Work supported in part by the U.S. Atomic Energy Commission.

¹R. C. Johnson, Nucl. Phys. <u>A90</u>, 289 (1967).

²G. Delic and B. A. Robson, Nucl. Phys. <u>A156</u>, 97 (1970).

³See, for example, W. Haeberli, in *Polarization Phe-nomena in Nuclear Reactions*, edited by H. H. Barschall and W. Haeberli (Univ. of Wisconsin Press, Madison, Wis., 1970), p. 235.

⁴The three tensor analyzing powers describe the change in cross section which occurs when the incident deuteron beam is aligned. The deuterons are said to be aligned, or tensor polarized, when the population of the m = 0 magnetic substate is different from $\frac{1}{3}$ for some choice of quantization axis. The analyzing powers are defined according to the Madison Convention as described in *Polarization Phenomena in Nuclear Reac*- tions, edited by H. H. Barschall and W. Haeberli (Univ. of Wisconsin Press, Madison, Wis., 1970).

⁵The experimental techniques have been described in detail by N. Rohrig and W. Haeberli, Nucl. Phys. <u>A206</u>, 225 (1973).

⁶R. C. Brown, A. A. Debenham, G. W. Greenlees,

J. A. R. Griffith, O. Karban, D. C. Kocher, and S. Roman, Phys. Rev. Lett. <u>27</u>, 1446 (1971).

⁷J. A. Thomson and H. O. Meyer, Bull. Amer. Phys. Soc. <u>18</u>, 119 (1973).

⁸The quantity l_n is the orbital angular momentum transferred to the target nucleus in the reaction. The special properties of reactions with $l_n = 0$ have been discussed in R. C. Johnson, Nucl. Phys. 35, 654 (1962).

⁹R. C. Johnson and F. D. Santos, Particles and Nuclei 2, 285 (1971).

⁻¹⁰The parameters have the values $D_0 = 1.251D_0^{0}$, $D_2 = 0.484 \text{ fm}^2$, and $\beta = 1.341/\text{fm}$, using the notation of Ref. 9. In the approximation used, the magnitude of the *D*-state effect on the tensor analyzing powers is approximately proportional to the parameter D_2 . The value of D_2 used in Ref. 9 is 10% larger than the value quoted above. The value $D_2 = 0.484 \text{ fm}^2$ was used in the present work because the nucleon-nucleon potential from which it was derived reproduces a wide range of scattering data, whereas the potential used in Ref. 9 does not. A discussion of how the parameters were calculated is rather lengthy and will be presented in a later publication.

¹¹R. V. Reid, Ann. Phys. (New York) <u>50</u>, 411 (1968). ¹²F. D. Becchetti, Jr., and G. W. Greenlees, Phys. Rev. <u>182</u>, 1190 (1969).

¹³J. M. Lohr and W. Haeberli, to be published.

¹⁴The neutron potential was taken to be a Woods-Saxon shape with a radius of $1.2A^{1/3}$ fm and diffuseness of 0.7 fm. A Thomas-type spin-orbit potential with a strength of 6 MeV was included, and the strength of the central potential was adjusted to reproduce the neutron binding energy.

¹⁵See, for example, D. C. Kocher and W. Haeberli, Nucl. Phys. <u>A196</u>, 225 (1972).

¹⁶G. Delic and B. A. Robson, Nucl. Phys. <u>A127</u>, 234 (1969).

Mass Excess and Low-Lying Level Structure of ¹⁴B

G. C. Ball, G. J. Costa,* W. G. Davies, J. S. Forster, J. C. Hardy, and A. B. McDonald Chalk River Nuclear Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario K0J 1JO, Canada (Received 11 June 1973)

The mass excess of ¹⁴B has been measured to be 23.657±0.030 MeV using the reaction ¹⁴C(⁷Li, ⁷Be)¹⁴B at $E(^{7}Li) = 52$ MeV; this shows that ¹⁴B is bound by nearly 1 MeV against neutron emission. Five excited states were also observed at 0.74 ± 0.04 , 1.38 ± 0.03 , 1.82 ± 0.06 , 2.08 ± 0.05 , and 2.97 ± 0.04 MeV. The low-lying level structure of ¹⁴B was found to be similar to the known negative-parity spectrum of ¹²B.

The mass of ¹⁴B has presented an intriguing puzzle for a number of years. In 1966, Garvey and Kelson¹ predicted ¹⁴B to be nucleon stable by ~400 keV. Although they considered their result to be equivocal, a short time later the nucleus was indeed observed by Poskanzer *et al.*² to be bound. In that experiment, a semiconductorcounter telescope was used in conjunction with a power-law particle identifier to establish ¹⁴B as one of many light nuclides produced in the spallation reaction, U + 5.3-GeV protons; its actual mass, however, remained unknown. More recently, it has been shown that the "longitudinal" mass relationship of Garvey *et al.*³ [see their Eq. (2)] predicts ¹⁴B to be *unbound* by ~400 keV⁴ if current mass measurements⁵ are used for neighboring nuclei. Specifically, the mass excess is given by

$${}^{14}B = {}^{16}C + ({}^{13}B - {}^{17}N) + ({}^{16}N - {}^{14}C)$$

or
$${}^{14}B = {}^{12}Be + ({}^{15}C - {}^{11}Be) + ({}^{12}B - {}^{14}C)$$

$${}^{=}25.00 \pm 0.10 \text{ MeV}.$$

This discrepancy between experiment and prediction is apparently characteristic⁴ of $T_z = 2$ nuclei with $A = 4n + 2 \le 26$, and may result from the incomplete cancelation of the interlevel residual neutron-proton interaction for the two odd-odd nuclei involved in each longitudinal relationship. Thus, an accurate measurement of the ¹⁴B mass can help to establish the region of validity for the mass equations and eventually lead to a more precise knowledge of the nucleon drip lines among low-Z elements.

A survey of the possible reactions that could be used to measure the mass of ¹⁴B shows that all have large negative Q values of ~20-25 MeV and require exotic targets and/or projectiles. We have used the reaction ${}^{14}C({}^{7}Li, {}^{7}Be){}^{14}B$ to obtain the first measurement of the mass excess of ${}^{14}B$. The result indicates that ${}^{14}B$ is bound by nearly 1 MeV, a disagreement of ~1.4 MeV with the predictions.

A 52-MeV ⁷Li beam from the upgraded Chalk River MP tandem accelerator was used to bombard a self-supporting, ~250- μ g/cm², ¹⁴C target prepared by cracking isotopically enriched (~94% ¹⁴C) methyl iodide in a radio-frequency discharge.⁶ A $\Delta E(26 \ \mu m)$, $E(164 \ \mu m)$, $\overline{E}(700 \ \mu m)$ solid-state counter telescope positioned at angles $\leq 20^{\circ}$ was used to detect and identify the reaction products. The data were recorded event by event on magnetic tape and played back on the Chalk River PDP-10 computer using the ⁷Be range-energy table of Northcliffe and Schilling⁷ to describe the energy loss or each detected particle.

The ¹⁴C(⁷Li, ⁷Be)¹⁴B energy spectrum obtained at $\theta_{1ab} = 15^{\circ}$ is shown in Fig. 1, and represents the accumulation of several shorter runs over a period of 3 days at an average beam current of 20 nA. Data from the (⁷Li, ⁹Be) reaction, which were obtained simultaneously in this experiment, monitored possible gain and/or zero shifts.

It is evident from Fig. 1 that the small amount of $^{12}C(8\%)$, $^{14}N(2\%)$, and $^{16}O(4\%)$ in the ^{14}C target produces a significant background in the region of the ^{14}B ground state. (The iodine present does not affect the spectrum in this region.) As

FIG. 1. An energy spectrum from the reaction ${}^{14}C({}^{7}Li, {}^{7}Be){}^{14}B$. The double arrows denote the ground and first excited (0.431 MeV) states of ${}^{7}Be$. The data have been smoothed by averaging over five channels. Levels populated in the reactions ${}^{12}C({}^{7}Li, {}^{7}Be){}^{12}B$, ${}^{14}N({}^{7}Li, {}^{7}Be){}^{14}C$, and ${}^{16}O({}^{7}Li, {}^{7}Be){}^{16}N$ are also identified.

VOLUME 31, NUMBER 6

a result, it was necessary to obtain spectra for these impurities by bombarding targets of adenine $(C_5H_5N_5)$, NiO, a vacuum-evaporated ¹²C foil, and a ¹²C film produced by cracking natural methyl iodide. A composite impurity spectrum was constructed by normalizing the individual spectra to the intensities of known^{8,9} levels populated in the reactions ¹²C(⁷Li, ⁷Be)¹²B, ¹⁴N(⁷Li, $^7\mathrm{Be})^{14}\mathrm{C}, \text{ and } ^{16}\mathrm{O}(^7\mathrm{Li},\,^7\mathrm{Be})^{16}\mathrm{N}$ and observed in the ¹⁴B spectrum. A portion of this impurity spectrum is compared with the ¹⁴B spectrum in Fig. 2. The highest-energy peak observed in the ^{14}B spectrum that could not be attributed to a known impurity level was assigned as the ground state of ¹⁴B. The Q value for the reaction ${}^{14}C({}^{7}Li,$ $^{7}\text{Be})^{14}\text{B}$ was determined using the known ^{12}B , ^{14}C , and ¹⁶N levels to provide an internal energy calibration of the counter-telescope system which was relatively insensitive to angle and targetthickness uncertainties. A shorter run at θ_{1ab} = 20° demonstrated that the stronger peaks attributed to excited levels of ¹⁴B had the expected kinematic shift.

The Q value for the reaction ${}^{14}C({}^{7}Li, {}^{7}Be){}^{14}B$ was found to be -21.499 ± 0.030 MeV and corresponds to a mass excess for ${}^{14}B$ of 23.657 ± 0.030 MeV. Excited states were observed at 0.74 ± 0.04 , 1.38 ± 0.03 , 1.82 ± 0.06 , 2.08 ± 0.05 , (2.32 ± 0.04) , 10 and 2.97 ± 0.04 MeV. As was found previously,⁴ every level populated via the (${}^{7}Li$, ${}^{7}Be$) reaction is observed as a doublet in the ratio ${}^{7}Be(0.431)/$ ${}^{7}Be(g.s.) \sim 0.3$. The cross section for producing ${}^{14}B$ in its ground state was approximately 4 $\mu b/$ sr.

It is well known⁸ that the low-lying negativeparity levels of ¹²B result primarily from the coupling of a $1p_{3/2}$ proton hole to a $2s_{1/2}$ or $1d_{5/2}$ neutron. In particular, the 1.674-MeV, 2⁻ and 2.621-MeV, 1⁻ levels in ¹²B have been identified as the members of the $((p_{3/2})_{\pi}^{-1}, (2s_{1/2})_{\nu}^{-1})$ multiplet, while the 3.388-MeV, 3⁻, 4.37-MeV, 2⁻, and 4.54-MeV, 4⁻ levels have been associated with the $((p_{3/2})_{\pi}^{-1}, (1d_{5/2})_{\nu}^{-1})$ multiplet. Since the two extra neutrons in ¹⁴B occupy the inactive $p_{1/2}$ shell, it is expected that the low-lying negativeparity spectrum of ¹⁴B should be similar to that of ¹²B.

A comparison of the energy spectra obtained at $\theta_{1ab} = 15^{\circ}$ for the reactions ${}^{14}C({}^{7}Li, {}^{7}Be){}^{14}B$ and ${}^{12}C({}^{7}Li, {}^{7}Be){}^{12}B$ is shown in Figs. 2(c) and 2(d); a summary of excitation energies and relative intensities is given in Table I. It is apparent from these data that (1) all known negative-parity levels of ${}^{12}B$ are populated in the (${}^{7}Li, {}^{7}Be$)

FIG. 2. (a) A portion of the ¹⁴B energy spectrum shown in Fig. 1. (b) A composite (¹²C, ¹⁴N, ¹⁶O) impurity spectrum. (c) ¹⁴B spectrum with impurities subtracted. (d) An energy spectrum from the reaction ¹²C(⁷Li, ⁷Be)¹²B which has been shifted in order to compare the negative-parity states populated in ¹²B and ¹⁴B.

reaction with relative intensities which differ from one another by at most an order of magnitude; and (2) a one-to-one correspondence can be established between the known negative-parity levels of ¹²B and the ground and first four excited states of ¹⁴B. These observations lead to tentative spin assignments of 2⁻, 1⁻, 3⁻, 2⁻, and 4⁻ for the ground state, 0.74, 1.38, 1.82, and 2.08 MeV levels of ¹⁴B, respectively.

The 1.4-MeV disagreement between our measured mass of ¹⁴B and that predicted by the longitudinal mass relationship suggests that formula to be inapplicable to light odd-odd nuclei with T_z =2. Whether the "transverse" relationship of Garvey *et al.* [Eq. (1) of Ref. 3] should fare any better when it involves odd-odd nuclei in this

TABLE I. A comparison of the negative-parity levels populated in the reactions ${}^{14}C({}^{7}Li, {}^{7}Be){}^{14}B$ and ${}^{12}C({}^{7}Li, {}^{7}Be){}^{12}B$.

Level	¹⁴ B Relative		Level ^a energy	Relative	¹² B Relative intensity			Dominant
energy intensity		sity		energy				
(MeV±keV)	⁷ Be(g.s.)	(0.431)	(MeV)	(MeV)	⁷ Be(g.s.)	(0.431)	$J^{\pi^{\mathbf{a}}}$	configuration
0	1.0	0.6	1,674	0	1.0	0.4	2-	$(1_{p_{3/2}}^{-1}, 2s_{1/2}^{-1})$
0.74 ± 40	0.3	<0.1	2.621	0.95	0.3	<0.1	1	$(1p_{3/2}^{-1}, 2s_{1/2}^{-1})$
1.38 ± 20	1.5	b	3.388	1.71	1.4	b	3-	$(1p_{3/2}^{-1}, 1d_{5/2}^{-1})$
1.82 ± 60	1.6 ^{b,c}	b	4,37	2.70	0.8	≤ 0 .3	2-	$(1p_{3/2}^{-1}, 1d_{5/2}^{-1})$
2.08 ± 50	3.8	1.0	4.54	2.87	2.1	$\leq 0.9^{b}$	4-	$(1p_{3/2}^{-1}, 1d_{5/2}^{-1})$

^aSee Ref. 8.

^bThese transitions were obscured by other levels.

mass region must then be doubted as well. Interesting test cases could be provided by ¹³Be and ¹⁵B whose masses can be predicted with the transverse mass equation now that the ¹⁴B mass is known. These masses can also be predicted, though, without using the mass of any odd-odd nucleus by combining both the longitudinal and transverse expressions. For ¹⁵B the results are

 ${}^{15}B = {}^{14}B + {}^{16}C - {}^{14}C - {}^{16}N + {}^{15}N$

 $= 28.75 \pm 0.03$ MeV (transverse),

 ${}^{15}B = {}^{13}B + 2({}^{16}C - {}^{14}C) - {}^{17}N + {}^{15}N$

 $= 30.14 \pm 0.04$ MeV (combination).

In either case, ¹⁵B is bound by more than 1.5 MeV, and a direct mass measurement could easily distinguish between the two predictions. For ¹³Be the comparable predictions are 35.34 ± 0.11 MeV and 36.68 ± 0.20 MeV, both indicating it to be unbound to neutron emission by at least 2 MeV.

The properties of all members of the mass-14 T = 2 multiplet can now be evaluated. The mass excess of ¹⁴F is predicted [from Eq. (3) of Kelson and Garvey¹¹] to be 33.38 MeV, which shows the nucleus to be unstable by ~3 MeV to proton decay. An estimate of the excitation energy of the lowest T = 2 levels in ¹⁴C, ¹⁴N, and ¹⁴O can be made from the mass of ¹⁴B using experimental Coulomb energy differences; values of 22.5, 24.8, and 22.5 MeV are obtained for ¹⁴C, ¹⁴N, and ¹⁴O, respectively. As a result, these levels should be stable to allowed neutron decay by ~0.7 MeV and unstable to proton decay by <3.0 MeV. Boron-14 itself is expected to have a half-life of

^cCalculated assuming ${}^{7}Be(0.43)/{}^{7}Be(g.s.) = 0.3$ for the 1.38-MeV level.

less than 50 msec with several (probably weak) β -delayed neutron branches.

*Attached staff from Laboratories des Basses Enérgies, Centre de Recherche Nucléaire et Université Louis Pasteur, Strasbourg/3, France.

¹G. T. Garvey and I. Kelson, Phys. Rev. Lett. <u>16</u>, 197 (1966).

²A. M. Poskanzer, S. W. Cosper, E. K. Hyde, and J. Cerny, Phys. Rev. Lett. 17, 1271 (1966).

³G. T. Garvey, W. J. Gerace, R. L. Jaffe, I. Talmi, and I. Kelson, Rev. Mod. Phys. 41, S1 (1969).

⁴G. C. Ball, W. G. Davies, J. S. Forster, and J. C. Hardy, Phys. Rev. Lett. 28, 1069, 1497 (1972).

⁵A. H. Wapstra and N. B. Gove, Nucl. Data <u>9</u>, 267 (1971); H. H. Howard, R. H. Stokes, and B. H. Erkkila, Phys. Rev. Lett. <u>27</u>, 1086 (1971).

⁶J. L. Gallant, Nucl. Instrum. Methods <u>102</u>, 477 (1972).

⁷L. C. Northcliffe and R. F. Schilling, Nucl. Data, Sect. A 7, 233 (1970).

⁸F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. <u>114</u>, 1 (1968); F. P. Mooring, J. E. Monahan, and R. E. Segel, Phys. Rev. <u>178</u>, 1612 (1969); H. T. Fortune and C. M. Vincent, Phys. Rev. <u>185</u>, 1401 (1970); R. O. Lane, C. E. Nelson, J. L. Adams, J. E. Monahan, A. J. Elwyn, F. P. Mooring, and A. Langsdorf, Phys. Rev. C <u>2</u>, 2097 (1970); J. E. Monahan, H. T. Fortune, C. M. Vincent, and R. E. Segel, Phys. Rev. C <u>3</u>, 2192 (1971).

⁹F. Ajzenberg-Selove, Nucl. Phys. <u>A152</u>, 1 (1970), and <u>A166</u>, 1 (1971).

¹⁰Brackets indicate that the existence of this level is uncertain.

¹¹I. Kelson and G. T. Garvey, Phys. Lett. <u>23</u>, 689 (1966).