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Using available experimental data, we give an upper bound for the sum of 0.«, (n. p) and
o.«, (rr P) above 60 GeV. It rules oUt an appreciable increase of this sum beyond 60 GeV.

High-energy experimental results in the last decade indicate that the Regge model is a useful but not
necessarily an economical tool for the parametrization of high-energy experimental data. Because of
its flexibility it can usually serve the purpose of correlating data and of giving a rough guide for plan-
ning future experiments. No fundamental importance can be attached if there is a disagreement be-
tween experimental results and the Regge-pole "prediction. " This situation is understandable when
dealing with complicated physical phenomena. , where many variables are simultaneously involved (e.g. ,

energy and momentum transfer). But for such a simple thing as the forward dispersion relation, it is
very much desirable to adopt an approach where the flexibility is eliminated, This is the purpose of
this note.

Using the averaged forward dispersion relation for the symmetric ~N amplitude and using the posi-
tivity of the total cross sections, the following upper bound is obtained:
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where 2v, (E) = v„,(m'P)+ o„,(n P), E, =8 GeV, and E, =20 GeV; M, &M and [M„M] is any energy inter-
val above 60 GeV. In practice this inequality is most useful for M, =N=60 GeV, and M is the highest
energy attainable by available accelerators. Throughout this note, we shall set M, =¹To have a feel
for the usefulness of inequality (1), let us suppose that for 60 ~E ~ M, we can parametrize 2v, =a
+ b ln'E/Eo.

Let us first set b =0; then inequality (1) implies that a must be smaller than 50.3+ 3, 46. 5+ 3, and
44.0+ 3 mb for M = 500, 1000, and 5000 GeV, respectively. Alternatively, by setting a =47.4 mb (the
Serpukhov data at 60 GeV) and b =0, then inequality (1) implies that 0.70~ 0.74+ 0.04, 0.747 ~ 0.74
+ 0.04, and 0.785 ~ 0.74+ 0.04 for M = 500, 1000, and 5000 GeV, respectively.

If we now set bt 0, a =47.4 mb, and &,=60 GeV, then the energy-dependent coefficient 5 is found to
be smaller than 3.4+ 3.4, —0.38+2.24, and —1.47+1.3 mb for M =500, 1000, and 5000 GeV, respec-
tively.

From these results, it is clear that inequality (1) rules out any appreciable increase of v, between
60 and 500 GeV. It tends to favor a constant behavior or a slight decrease in the total cross sections
v, . Inequality (1) is insensitive to the values of o, beyond 500 GeV [see Eq. (9) below]. It should be
noticed that our result is also useful to test asymptotic models for the total cross sections; in this
case we can set M =~.

Consider the m'p forward elastic amplitudes f'(E), where E is the laboratory energy of the incident
pions with momentum q, E = (q'+ p,')'~', with p, the pion mass. Let 2f, (E) = f'(E)+f (E) and 2o', = o'(E)
+ o (E). As a consequence of analyticity, crossing symmetry, and the Froissart-Martin upper bound
which are derived from the axiomatic field theory, the forward dispersion relation for f,(E) is valid
and needs at most one subtraction (in the E' variable):
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Let us denote by J,(E) the integral on the left-hand side (lhs) and l, (E) the integral on the right-hand
side (rhs) of (2). N is chosen to be the highest energy where experimental data on 0, are available
and satisfies the condition E &N Here we se.t N=60 GeV. The lhs of (2) is expressed in terms of mea-
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surable quantities. Our procedure consists of studying the integral I,(E) as a, function of E without
making any assumption on v, beyond the energy N. Since 0, is positive and E &N, is is clear that
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In practice, it is not convenient to use Eq. (2), because it is necessary to assume that o, has a
smooth behavior in order to carry out the principal-part integration. Although this is a currently ac-
cepted procedure, we would like to avoid making such an assumption, For this purpose, we average
Eq. (2) with an appropriate weight factor h(E) in the energy interval E, to E, (E, &E, &N). Later we
shall choose E, =8 GeV and E, =20 GeV. For a reason which will become clear later, we set h(E) =1.

Instead of Eq. (2), we now have

Reg, (E„E,) = (E, —E,) 'f 'Ref, (E)dE (4a
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where we have interchanged the order of integration, which is legitimate since (2) converges, and
have simplified the pole term by neglecting p compared with E, and E, Unlike. the factor 1/(E —E)
which appears in the principal-part integration, the function K(E;E„E,) is much easier to handle and
the value of the integral in (4b) is therefore not sensitive to the experimental errors of v, . We now

split the integral on the rhs of (4a) into two parts and define

(Z,(E„E,)) = .'~ 'j"—dE'(E'/q')o, (E')K(E', E„E,),

(I,(E„E2))= 2m 'f dE'(E'/q')cr, (E')K(E', E„E )

From (4b) we thus obtain

(I,(E„E2))= Reg, (E„E,) —Ref, (p) —f '/M —(J,(E„E2)).
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The rhs of (5c) is therefore a direct measure of the integral (5b) which involves all the total cross sec-
tions from N to infinite energy Its value .is given below. Since o, (E') &0 and K(E';E„E,) &0 in the
range of integration in (5b), we get the following inequality:

(I,(E„E,)) & 2m
'J dE'g, (E')K(E', E„E,), (6)
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where M„M &N In particul. ar, to get a strict inequality we choose M, =N Equation (.6) becomes

2w
'f dE' v, (E')K(E', E„E,) & Reg, (E„E,) —Ref,(p) —f '/M (Z, (E„E2)). —

Using experimental data for the real part of f '(E) in the 8 —20-GeV energy region4 and for o, from
the threshold to 60 GeV, ' the w-N coupling constant f ' =0.078, and Ref(g) = —0.002+ 0.004,6 the rhs of
(7) or (5c) is calculated to be 3.92+0.2 mb GeV as given in (1). This value is extremely insensitive
to the values of Ref, (g) and f'. The experimental error quoted on the right-hand side of (1) is based
on the assumption that the errors in Ref, (E) are purely statistical. This may be optimistic.

A more transparent but somewhat less strict bound than (1) can be obtained from (7) by noting that
in the range of integration the following inequality is valid:

K(E', E„E2)& 3(E,'+Ep, +E,2) —(E') '.
Hence, we have the following bound for o, :

f 2v, (E')dE'/E" &0.74+0.04 mb GeV '.

(8)
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If the experimental values for Ref, (E) were available for energy larger than 20 GeV, inequality (9)
would lead to a poor bound for v, . In this case, we should use inequality (7).

We now comment on the choice of the weight function h(Z). Unlike previous considerations, "we
want to amplify the high-energy contribution of (2) to improve the accuracy of the rhs of (1). This is
so because the relative errors of the lhs of (2) decrease with increasing F.. Hence the choice h(E) =1
was made.

To test the usefulness of our procedure, let us pretend that no information on o., above 30 GeV is
known. The rhs of inequality (1), now with iV = 30 GeV, gives 9.15+ 0.2 mb GeV, which is larger by
approximately a factor of 2 compared with the rhs of (1). Because the Serpukhov data, obey this new
inequality, we can conclude they are a test of the dispersion relation.

The implication from this discussion is clear: One cannot test dispersion relations by measuring the
real part of the forward amplitude in the same energy range as that of the total cross section. Previ-
ous claims of tests of dispersion relations, using experimental data for the real part from 8 to 20 QeV
and for the imaginary part below 30 GeV, are, in fact, tests of high-energy assumptions for the total
cross section beyond 30 GeV.
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