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lt is shown that in nuclear matter at Z =0 (neutron star) at a density n&&n„„@a n con-
densate appears. Nearly at the same density an electrically neutral rr+, 7t. condensate
arises. The rr condensate assumed by other workers apparently does not arise even at
very high densities.

The m condensation in nuclear matter was first
considered by the present author. " Later the
problem was considered once more by others"
for the case of a neutron star (Z «N). Sawyer'
and Scalapino4 came to the conclusion that at
some nuclear densities, a m condensate arises
(the charge is compensated by the same amount
of protons). The same result is assumed by
Kogut and Manassah. ' A more realistic consider-
ation given below does not confirm these conclu-
sions.

Let us write the condition for the instability of
nuclear matter with respect to the reaction n-P
+m . %e have

p~ —p„+ a&(k, ) =0,

where p~, p, „are the proton and neutron chemi-
cal potentials, &u(k, ) is the minimal energy of s
in nuclear matter, and ko is the corresponding
wave vector. For small proton densities,
—p, p= EF ~. Thus the instability arises only when
the m energy is less than the Fermi energy of
the neutrons. A detailed consideration of the pion
energy-momentum relation taking into account
the pion-pion interaction shows that an instability
does not arise up to very high nucleon densities
at least. Even if the instability arises, increase
of the n density in any case would be limited by
the pion-pion interaction. Let us start with the

case N=~ investigated by Migdal. ' There are
two branches of the meson spectrum: the "me-
son" branch, which tends to the free meson ener-
gy as the nuclear density n tends to zero, and
the "spin-sound" branch which coincides with the
spin-sound excitations' in nuclear matter, when
the meson-nucleon interaction is switched off.
At n =—0.5n, (n, is the usual nuclea. r density) the
spin-sound branch becomes unstable [e'(k) is neg-
ative for some k =—k, ]. This instability leads to
formation of an electrically neutral meson con-
densate p, = p, = y„with

% + = 2 (P&*tP2)

In the case Z «N these results hold for m' mesons
(Fig. 1) but the spectrum of s' and m entirely
changes.

The polarization operator II(~, k) for &u and k
of interest (&@61, k s m, h = c= m„= 1, m is the
nucleonic mass) is given by two types of graphs:

II(o, k) = ~'(k) —1 —k' =D, +D„
where D„ is the term represented by diagram x
in Fig. 2. The term D, corresponds to the ab-
sorption of a pion by a nucleon with the formation
of a hole in the Fermi distribution. The shaded
vertex means that the nucleon-nucleon interaction
1s taken into account. This vertex can be ex-
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FIG. 1. Branches of ~ spectrum for n =no. There is
a region of instabiIity with &0.

FIG. 2. Diagrammatic terms for Eqs. (&) and (2).

(1). The left vertex of the D, equals I'„=(g/2m)o'
~ k7 „, where g'/4m=14 and n is the pion isotopic
index. The vertices of D, are determined by the
amplitude of (n, N} resonance scattering.

In the case of Z= 0, the term D, for w', n me-
sons can be written in the form

pressed through the constants characterizing the
internucleon spin-spin interaction in nuclei. D,
corresponds to the transition of the pion and nu-
cleon into the 633 resonance. All other graphs
involve large four-momenta in intermediate
states and differ slightly from the corresponding
graphs in vacuum. They are taken into account
in the observable mass of the pion used in Eq.

The graphs for m' and m mesons differ only by
the sign of ~. A. similar relation takes place for
the graphs containing the 433 resonance.

The calculation of the first of Eqs. (2) gives,
in the case of nonrelativistic nucleons [omitting
the internucleon interaction at this stage, and us-
ing for the vertex I' =(v 2g/2m)o k =—v 2f o'k,
f= 1)], -

II '"(~, k) = 4f 'k +(n)(p)
~ —F~~'(k -pf+E~"~(P\ (2~)' 2v'0 ' a —5

where a=v+0 /2m, b=kvF, n~"~(P) is the Fermi distribution function, Il,'"((u, k)=II ~( —~, k). For lal
»b we have

u)+ k'/2m ' ' ~ —0'/2m '

In addition to these graphs the S-wave scattering which is negligibly small at A = Z should also be
taken into account:

II '= —4mnE ' Il '=-4nnE, ',

where I', ~ are the amplitudes of the m and m' mesons undergoing S-wave scattering on a neutron.
These amplitudes may be expressed through the amplitudes E, on the mass shell:

(4)

J-, &= —,'y, &+a '}+-,'~(F '-F, ') —= +0.1~.

For the second type of graphs (1}(resonance scattering) far from the resonance we have the following
(neglecting the nucleon and 6» kinetic energy difference):

II "(~,k) = —4mnF = —0.75nR 3
+

I 2

(d& —CO (d&+ (d
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The vertices in the resonance graph are taken in the form I'= Ck (P-wave scattering); the resonance
energy is &v~=2.4. The constant C has been chosen so that at &u=(1+k'}'" the observed amplitude of
the resonance scattering could have been obtained. The second term in the brackets of the formula for
II ~ takes into account the u channel, that makes a small contribution as u,: —co„, but is essential at
CO && (d&.

As a result we get the following expressions for the determination of m - and m'-meson spectra:

co' = 1+k'+ 1.3n( ' —0.75'' 3 1 2nf 'k'
+

&d& —(d (d&+ CO &d+ k 2m (6}

(7)

For simplicity in the last term in (6) the expression (3) is replaced by (3').

4(~, k'I=, , (
' ).mf Fk

The account of the nucleon interaction (the dashed vertex in the term D,}, as is shown in the theory
of the finite Fermi systems, may be reduced to multiplication of the last term in Eq. (7}by the factor

[1+g""(k)C(ru, k}] ',

where g""(k}is the quantity characterizing the neutron spin-spin interaction. For Z =N, K«2p F,
g""(k}=0.5p F and decreases with the increase of k. The account of the nucleon interaction in Eq. (6) is
reduced to multiplication of the last term on the right-hand side by the factor

2 -1

m pF

where g"~(k) for N= Z and k «2p F is equal to g"~= —0.3p F. For Z «N the functions g""(k) and g"~(k) are
not known, but they must not have a noticeable difference from analogous values for A = Z. The curves
in Figs. 1, 3, and 4 are calculated for g"" =0.5pF and g"~= —0.3pF. The results do not depend essential-
ly on the magnitudes of these values. The spectrum of m' is obtained from the spectrum of z by re-
placing ~ by —+. The result of the analysis (6) and (7) is given in Figs. 1, 3, and 4. For simplicity
we have omitted in Figs. 1, 3, and 4 the branch of (6), (7) which corresponds to the energies &u close
to the resonance energy, and is unimportant for our consideration. The dots indicate false solutions
of (6). The selection of physical solutions is defined by the following rule. The second quantization of
mesons moving in the medium and having a polarization operator Q(m, k) dependent on the frequency is
reduced to quantization of the field with a Lagrange function with time derivatives of ( of arbitrary

"0.73

FIG. 3. The energy-momentum re1ation for 7t in the
ease of a neutron star with n =0.4&n

FIG. 4. The energy-momentum re1ation for n. + in a
neutron star with n =0.4&n
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part introduces only 5%—7% but as &u-0 it gives
a very large contribution. To obtain a correct
expression for II at e-0 we should include the
exchange part in H'" but not in II .

(2) When 2&@ = &II/&&@ the velocity d&u/dk = ~ and
w, +&u =0 (see analogous situation in Ref. 1).

(3) It can be shown that graphs omitted in our
calculations give a, correction —p/m. So it is by
no means a perturbation theory in terms of f'
[see Eqs. (1) and (6)].

(4) The quantity g (k) which determines the spin-
spin interaction in the polarization operator dif-
fers from the corresponding quantity introduced
in the theory of finite Fermi systems, because
by definition, it does not contain the one-meson
graph. As k —0 these quantities are equal and
we can use the values g""(0) and g"k(0) given in
Ref. 7.

(5) From our considerations it follows, evident-
ly, that the phase transition of second order as-
sumed in Refs 3—5 is impossible, but the first-
order transition is not excluded. Really from
Fig. 4 it follows that n' mesons have negative
energies in a neutron star. This means that in
a proton medium the m meson has negative en-
ergy. It is not excluded that a transition of first
order is possible, i.e. , at some density the neu-
tron star may turn into a proton star in which
the density of protons and ~ mesons is greater
than the neutron density. This question will be
discussed elsewhere.

A more detailed consideration will be given in
a future paper.

The author expresses his thanks to A. A. Mig-
dal, A. M. Polyakov, V. A. Khodel, and his col-
laborators O. Markin and I. Mishustin.

C„"=[2o~k' -511'/5(u] "
C„' '= [2(u„' ' —&ll /&(u] 'l'.

Kith this the Hamiltonian will acquire the form

Zk(ak ak~k bk bk+k

Therefore, only solutions to (6) satisfying the
following condition are of physical sense:

2(uk —(&11/&(u)„, &0.

At the points where 2&uk = (SII/Bu:) „, an in-(' - tiJ~ &

stability arises with respect to TI'z pair crea-
tion and the meson interaction should be taken
into account for the restoring of stability. Kith
the neutron density increasing there arises an
instability for mo-meson creation. From (7) put-
ting o =0 and k -=2p~ we have (pF)o —= 2.2, no
=0.35. At n &~& a m -meson condensate arises
analogous to that in the medium with A =Z. Ap-
proximately at the same density an instability
with respect to the meson-pair creation arises
and an electrically neutral condensate of v'7]-

mesons appears. The presence of the m conden-
sate leads effectively to a mass increase of z+,
w mesons. For instance, for the 4A(y y„)' in-
teraction type the positive term —,'Ago ( $ is add-
ed to the m' meson Lagrangian, where y, is the
g'-meson condensate field. For the same reason,
within the total density region under considera-
tion the minimal g -meson energy exceeds the
neutron Fermi energy and ~r condensate consid-
ered by Sawyer' and Scalapino' does not arise.
It should be noted that if such a condensate had

arisen, the meson interaction would have limited
the increase in m meson density v. For example,
with a 4ily' interaction, for the v -meson fre-
quency to be defined one should solve the problem
of the anharmonic oscillator (1), and the meson
condensate energy would be —

A. v that ls ap-
proximately the same value as that for relativis-
tic electrons, and v is, thus, of the same order
as the electron density in a neutron star (v!n-0.01).

Additional remarks (1) It se.e—ms at first sight
that the exchange part of the pole graph is count-
ed two times in II'" and in II". To avoid this we
had extracted the corresponding term from the
observable (a ~a) amplitude. In the expression
II = —4m'", E is only the resonance part of
F» amplitude. At &u =co+ ——(1+k~')'~' the exchange
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order. Making use of the usual formalism and supposing that

t/) =Qk(Ck~'~ak exp[i(uk '~t —k r)]+ Ck bkt exp[ —i(~k' ~t —k r)]],
it is easy to obtain
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