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The concept of a spherical wave is extended for application to anisotropic crystalline
fields. The construction and labeling of such waves are outlined for a schematic model.
Possible applications are indicated.

A multipole source radiates into isotropic sur-
roundings a spherical wave which is an eigen-
function of the square of angular momentum. Ex-
pansion into such waves is basic to the theory of
scattering by small objects, as well as to the
study of bound states that extend into the sur-
rounding medium.

The anisotropy of crystals spoils the conserva-
tion of angular momentum and has thus hindered
the application of spherical-wave techniques to
problems concerning radiation from localized
sources or impurity effects in crystals. More
specifically, the motion of an electron in the lat-
tice surrounding an impurity is generally studied

by considering separately its interactions with
individual lattice atoms, whereas the same inter-
actions can be treated globally in the construc-
tion of Bloch states, by taking advantage of trans-
lational symmetry. Callaway has attempted to
remedy this situation by a theory of impurity
scattering analogous to atomic theory, replacing
the angular momentum classification of spherical
waves by a point-group classification. However,
labeling of waves by point-group symmetry does
not suffice to classify a complete set of waves
of given energy; applications were then carried
out under a restriction to spherical energy sur-
faces. '

This Letter points out that the quantum number
L of a 2 -pole wave characterizes not only its
angula, r momentum, but also the lowest term of
its expansion into powers of the distance from
the center of coordinates. This second criterion
applies irrespective of anisotropy. It preserves
the essential feature that only low-L waves inter-
act appreciably with a localized source or per-
turber. It also provides for labeling of a com-
plete set of spherical-type waves. On this basis
we introduce a multipole-wave approach to prob-
lems of crystal physics.

The work originates from efforts to interpret
large and extensive structures in the inner-shel. 1

photoabsorption spectra of crystals. These struc-
tures depend on the parity and rnultipolarity of

the photoemission (into s,P, . . . channels) and
hence cannot be reproduced by multiplying an
atomic spectrum by a single normalization fac-
tor proportional to the density of final states in
the crystal. ' To this problem we contribute here
only a qualitative remark because detailed ap-
plication to any one crystal phenomenon would
require further development while restricting
needlessly the focus of attention. We concentrate
instead on demonstrating the construction of mul-
tipole waves for the schematic example of a two-
dimensional "tight-binding" model. This exam-
ple will suffice to show that a localized perturba-
tion interacts with a multipole wave in propor-
tion to a normalization coefficient which depends
on the multipolarity and coincides with the den-
sity of states only for a monopole. (Indeed photo-
absorption is usually shown to be proportional to
the density of states by assuming that it yields a
pointlike source of electrons, equally coupled to
plane waves traveling in a.ll directions. )

Our restriction to a very schematic model has
the purpose of minimizing notations. Extension
to three dimensions and to more realistic wave
functions is straightforward, except for the in-
troduction of irregular functions mentioned fur-
ther below. The use of point-group symmetry,
which is central to the approach of Ref. I, ap-
pears in the present treatment as a simplifica-
tion whose relevance and role will be indicated
but whose explicit development is deferred, as
is also the development of many other points.

We consider, then a two-dimensional crystal-
line lattice of cells identified by pairs of integer
indices (m, n) To each. cell there pertains a. Wan-
nier wave function u(r —8 „), where Q„„ is a
reference point in the cell; no band index is re-
quired for our purposes. An eigenfunction of an
electron with energy .& in the crystal is repre-
sented by a superposition

4'(F. , r) =Q„„g(F-;m,n)u(r —R „).

The translational invariance of the lattice leads
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to the existence of Bloch states with

g(E, ;m, n) =su"'(E; n, P)e'" '8"~. (2)

Here u is a normalization coefficient and e and
I3 are wave-vector components (in units of the
basis vectors of the reciprocal lattice) related
to each other and to E by a dispersion relation

pends on its normalization. Normalization per
unit n and P would lead to m = (2v) '. We intend,
however, to normalize per unit of the fixed en-
ergy E. Accordingly we choose as a pair of in-
dependent variables the energy E and a direction
parameter p of the plane wave. Normalization
per unit & and p requires that

(4)

which defines the constant-energy curve on the
(n, P) plane. (The properties of the functions D
and u are not relevant here. A study of the con-
struction of D in terms of unit-cell parameters,
irrespective of tight-binding approximations, is
in progress and will be reported elsewhere. )

The amplitude m "' of the plane wave (2) de-

where the Jacobian is calculated from (3) and
from tang =P/n. The coefficient (4) is the den-
sity of states differential in E and y. (For a
square lattice, y is the direction angle of the
plane wave. )

Multipole waves will now be constructed as su-
perpositions of plane waves (2) with equal E and
different y. We define

gL, (E;m, n) = Jo
'

dy cL,(n, P)zv '"(E;n, P)e ' ~

with the intention of selecting coefficients cL, such that the power expansion of (5) contains no terms
m" n' with r+s &L. The index q will distinguish different waves with the same I-. (In the isotropic
case, where D and u are independent of cp, the problem is solved by cL, ~cosLp, and (L, reduces to
the familiar form ZL((n'+ p')"'(m'+n')'I') cosLy with tang =n/m. ) The integrals in the expansion

gL, (E;m, n) =Q„,i""[m"n'/(r Js ')]J, dip cL, (n, p)zv "'(E;n, p)n" tl'

will then be made to vanish for a/l r+s &L. This condition identifies the functions cL, as the set ob-
tained by orthogonalization to the sequence of n" P' arranged in order of increasing r+ s, with the
weight function m(E; n, P). Ordering at equal r+s may remain unspecified.

The orthogonalization problem is solved by setting
p+ O~L

cL,{n,p) =w' '(E;n, p) g d ~ ' nl'p
Pi&

where the coefficients d of the polynomials remain to be determined. Equation (7) transforms (6) into

s p+ o~L
$„,(Emn)=pi""

t ) Q M„, p, dq~ '~,
7s V ~ S ~

p g

where the matrix elements

M„, ~
= f, dye(E; n, p)n"'~p"

are moments of the distribution of (n, P) over the curve of constant E and are the essential ingredients
of the present theory. The expansion (8) starts with terms of Lth degree provided

p+a~L
M„, &, d &

1 ' ~ = 0 for all r + s & L.
po

(10)

This system of equations permits elimination of all dp
' with p+a &L, insures that the c~ with dif-

ferent I- are orthogonal over 0» y &2m, and reduces the orthonormality of the cL, with equal L to

p+ a= L p'+ O'=L

PD P 0

Here M ~ is the matrix

(12)
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obtained by eliminating p+o &L using the projec-
tion operators

(L)
po p'a' ~ p+ a,L~ p'p ~ a'o~

q(l) P p(L)
I=0

Equation (11) has no unique solution for L &0,
but one may choose a. standard base set of g~, by
requiring the d&,

'~ to be eigenvectors of M
Each orthonormal set of g~, with given L is at
first view of the same order as the matrix M~ ~,

equal to the number L+1 of pairs of integers (p,
o) with p+ o =L; for a three-dimensional system
the corresponding number is 2(L+1)(L+2). This
multiplicity differs from that of isotropic sys-
te~g, which is familiarly twofold in two dimen-
sions (for LW 0) and (2L+1)-fold in three dimen-
sions. Physically, the difference occurs because
the number of independent multipole fields is re-
stricted by symmetry in isotropic media. (For
example, in three-dimensional isotropic space
the quadrupole fields V„'r ', V','r ', and V', 'r '
add up to zero. ) Formally a reduction of the num-
ber of independent multipole waves results from
any reduction of the rank of the matrices M

Such a reduction may result from symmetries
which "reduce" the matrix M into separate diag-
onal blocks, in the sense of group theory. First-
ly, time-reversal invariance always causes w(a.',
P) to be even under the inversion (n, P)- (—n, —P).
Because of this symmetry, (9) vanishes for all
odd values of r+ s+p+0', thus restricting the
polynomials in (7) to even values of I. —p —a and
the expansion (8) of g„, to terms with even val-
ues of r+s —L. The matrices M and M reduce
further in accordance with the point-symmetry
group of the cell array, expressed through sym-
metries of D and Ml, whereby the coefficients
d~,~ ') and the waves p~, with different tI are sort-
ed out into the various symmetry species. Thus,
e.g. , in the isotropic limit the M„, ~, are pro-
portional to the averages of cos"'~cp sin" y, and
are easily evaluated for all pairs with r+ s or
p+0 equal to 0 or 2; one then verifies that M '
is of order 3 but of rank 2 and that there are only
twa independent waves g„.

The treatment of an impurity at m = n = 0 re-
quires the matching of its wave function to those
of the surrounding crystal lattice. To do this one
needs not anly wave functions Pz, regular at m
= n = 0 but also the corresponding irregular func-
tions. The latter may be introduced by general-
izing the procedure used for Bessel functions, '

considering that w(E; a, P) is periodic in cp and

assuming that it remains bounded when p —~ in
the complex plane; this assumption holds at least
for a broad class of models. The steps of the
procedure are these: (a) Define y, by setting
m =h sing, and n = —h cosp„whereby am + Pn

vanishes for cp =cp,. (b) Extend the path of inte-
gration in Eq. (5) to run a.long six legs into the
complex field, as indicated by

0'0 ~0+ 7I ~o+ 7I ~ ~ ~p+
y+~ + y + y+ft- + y+m i

+ f;;,',"+f,';,",;"" . (13)

(c) Note that under the assumptions for w, the
first and last legs, as well as the third and fourth,
cancel in pairs thus leaving the total integral
equal to (5); also, each leg remains finite except
for m =n= 0. (d) Split the integral into separate
sums of the first three and of the last three legs;
the separate sums represent ingoing and outgoing
progressive waves, respectively, while their dif-
ference yields the desired irregular standing
wave.

The wave function of a photoelectron ejected
from an atom with angular momentum l need not
match a single multipole wave of the surrounding
crystal with L =l, but must anyhow be matched
to a superposition of waves of the same point-
group symmetry. The photoemission rate will
depend on the phase matching, as it does for free
atoms, and may thus exhibit resonances when
the phases are sensitive to energy. The rate al-
so depends linearly on the squared coefficients,

p+a=L

P Q,.p.")dp."'~',
po

of the lowest terms in the expansion of the rele-
vant multipole wave. From the normalization
equation (ll) one sees that these squared coeffi-
cients, in turn, depend linearly on the eigenval-
ues of M ~. Proportionality of photoemission to
the usual density of states, i.e. , to Mpppp is thus
restricted to L =0 as anticipated above; for I c0
photoemission depends also on moments M„, ~
of the density of states, of order r+ s+ p+ 0@0.

The construction of multipole waves by super-
posltlon of plRne wRves Rpplles Rlso to light ln
crystals. Thus, e.g. , the angular distribution of
light emitted by an atomic dipole in a crystal
does not obey the Hertz formula but is given by
the asymptotic expansion of a P„wave for (m, n)

It is thus proportional to the value of (c„(n,
P) I' evaluated at the paint of stationary Phase,
where 8(a.m + Pn)/&y = 0. This remark should
open the way for theory and experiments on the
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angular distribution of fluorescence by crystal
impurities, analogous to the well-established
studies of radiations from single atoms and from
nuclei.
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We have investigated the effect of Coulomb interactions on the gain spectra of highly
excited semiconductors, specifically GaAs. It is shown that at low temperatures there
is an enhancement of the direct excitation of approximately a factor of 2 and a sideband
due to particle-hole pair excitations that extends into the gap. As the temperature in-
creases, it is argued by analogy to the electron-phonon problem that the sideband
changes into an Urbach tail with gain of the order of 10-100 cm

Stimulated recombination in direct-gap semi-
conductors has been under intensive study in the
last decade. " There exist extensive calculations
of gain versus temperature and degree of inver-
sion based on independent-particle models taking
into account band-structure effects' and impurity-
band tailing. " Recently, direct measurements
of the gain spectrum have become available for
optically pumped systems at low temperature and
for a variety of pump powers. ' One of the most
striking features is that gain begins only at one
or two exciton energies below the gap. This ef-
fect has been explained" as being a result of ex-
change and correlation. We discuss in this paper
two additional effects due to this Coulomb interac-
tion: (i) an enhancement of the band-to-band gain,
and (ii) emission below the band-to-band process-
es that takes the form of a plasmon sideband at
low temperatures and a self-induced band tail at
high temperatures. We argue that this band tail
may be quite important in understanding the prop-
erties of undoped or lightly doped (& 10"cm ')
GaAs lasers operating at room temperature.
This sideband effect has previously been dis-
cussed. ' However, there are large cancelations
omitted by previous authors, and consequently
our results are very different.

We shall limit ourselves to isotropic electron
and hole bands described by effective density-of-
states masses m, and m„. We shall also special-

ize to Ga.As as an illustration and take m„/m,
= 9.5. The absorption and gain of an inverted
semiconductor is given by the imaginary part
of the dielectric function. This is calculated to
lowest order in the dynamically screened Cou-
lomb interaction, V(q) =(4ve'jq')[e(q, ~)] ', by
summing the three diagrams shown in Fig. 1.
The dielectric function e(q, ~) of the electron-
hole plasma is further approximated by the sin-
gle-plasmon-pole approximation that has been
used extensively by Hedin and Lundquist. ' How-
ever, in order to attempt to represent the true
spectrum of a zinc-blende material, ' we broad-
en the plasmon into a Lorentzian whose width is
—,', of the plasma frequency. When the gain spec-
trum is calculated, we find an enhancement of
the band-to-band recombination. This enhance-
ment varies somewhat with frequency and is ap-
proximately a factor of 2 at low temperature.
The slightly distorted gain spectrum is compared
with the single-particle result in the lower right-
hand corner of Fig. I for a typical electron-hole
density at low temperature. It is seen that the
enhancement is considerably reduced compared
to that of the exciton problem" because of the
screening of the Coulomb interaction. We have
crudely estimated the effects of multiple scatter-
ing by using the work of Mahan" and found them
to be small. In the same calculation, we can
look at Auger processes involving the emission


