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with the requirement of conservation of energy,
this constitutes a selection rule so restrictive
that no currents would be observable in our ex-
perimental range. In tunneling from axially sym-
metric vortex states into the plane-wave states
of a normal metal, the selection rules, accord-
ing to our preliminary calculations, are much
less restrictive. Again there are difficulties in
applying such a rule to a vortex in dirty material
in which p is not well defined, but we expect that
an equivalent rule will apply, limiting the amount
of tunneling, at least within a mean free path of
the vortex center.

In conclusion, we believe that the vortex cores
in our films are well aligned across our tunneling
barriers, that the H?-dependent tunnel currents
in our S,-I-S, junctions arise from those regions
outside the smaller vortex cores whose proper-
ties are not independent of the vortex packing den-
sity, and, finally, that although the tunneling
from a vortex core to a normal metal may show

the usual probability, the tunneling between two
vortex cores is reduced to negligible proportions
by the requirement that angular momentum be
conserved.
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In their recent work using the renormalization-group approach, Fisher, Ma, and Nick-
el derived results for 7 when there is a long-range interaction, »"¢~%, which were seem-
ingly at variance with the numerical results of Nagle and Bonner. The problem is the
presence of nonthermodynamic terms in the spin-spin correlation function which never-
theless contribute to the thermodynamics. We also find that the scaling relation between

6 and 7 fails to hold for d >2¢.

Recently Fisher, Ma, and Nickel' have com-
puted theoretically the value of the critical index
n for a system with long-range spin-spin inter-
actions in 4 dimensions of the form 1/9%*°, They
employed the renormalization-group approach in-
troduced by Wilson*® and Fisher,* which has been
rather successful in this general area. Conse-
quently it is somewhat disturbing that these re-
sults (d=1, 0 <0.3) do not agree with the careful
numerical estimates of Nagle and Bonner.® Bak-
er® showed that there is a model, with long-range
forces (but not translationally invariant), in
which the approximate recursion relations, de-
rived by Wilson® using the renormalization-group
approach, are exact. Since this model is exactly
solvable using renormalization-group methods,
we have investigated its solution in order to at-
tempt to resolve the discrepancy. We found that

22

it is necessary for o/4d < f;, when considering spin-
spin correlations in this model, to distinguish
between long long-range order and short long-
range order. That is to say, we may have in the
thermodynamic limit, when the system size tends
to infinity, a different behavior when the length
considered is long compared to the lattice spac-
ing but short compared to the system size than

we get when it is comparable to the system size.
The quantity studied numerically by Nagle and
Bonner,® called 7 by them, is a characteristic of
long long-range order, while the usual definition
used by Fisher, Ma, and Nickel! is a characteris-
tic of short long-range order. Our calculations
reproduce both results in a highly satisfactory
manner. They yield

1=2=0, T=min(2-0,2 ~%d) 1
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for 0 <o <d. There is no transition in the model for o >d, and the total interaction strength per spin is
infinite for 0 <0 (see also Stell”). The result for 5 agrees with Suzuki’s® inequality n 22 -0, 0<o<2.
We further find for the critical index 6 (H < M? on the critical isotherm)

_ d+o\ d+2=-m\ _d+2-7%
b—max<3,-——d_c>—max<3,d_2+n>—d_2+7~’. (2)

The second two equalities follow from the first by Eq. (1). It is to be observed from Eqs. (1) and (2)
that the Bragg-Williams approximation or “classical” results are obtained for 0 <o <3d.

We have further investigated the question of symmetry of the susceptibility divergence exponents y
(T>T.) and y’ (T <T.), as well as the behavior of the spontaneous magnetization [M« (T', - T)?| near
the critical point. To check the validity of the Wilson? linearized recursion relation to evaluate y we
have used the thermodynamically prescribed procedure of first evaluating numerically the susceptibili-
ty x at fixed.temperature and then taking the limit as T - T,. The same type of procedure was used to
study 8. We found that the Wilson linearized recursion relation gives the thermodynamically correct
value of y for this model for all d. We further found

Y=y, B=y/(6=1). (3)

The Ising model we study® is described by the Hamiltonian

I / 2B 2 dL /2 , 1-27E0+9 2
H=g ) 2™ 5% s, 2 +mH2"?8, 14y —35d o107 v (4)
p=o0 m=1 - 7

where

Smp+1= (Szm-l,p—' §2m,p)/\/§—7 Sm,;t+1 = (gzm-l,p"' 32m,p)/‘/§ m=1,..., 2Ld-2-p)’
8;-1=v; (5=1,...,2%) (5)

for u=-1,0,1,...,Ld-2. The numerical studies have been done with the spins distributed as
exp(+av,® - 1v;* to simulate spin-3 Ising-model spins, but other reasonable continuous distributions
should yield similar results. This Hamiltonian can be interpreted® as representing a ferromagnetic
Ising model on a hypercubical lattice of d space dimensions. However it should be borne in mind that
the intrinsic structure is the same in all dimensions and the structure is the same as that of Dyson’s
hierarchial model.® As is evident from Eq. (7) below, the model depends only on (5/d) and not on o
and d separately; therefore this model does not show the short-ranged behavior shown by the spheri-
cal model and conjectured by Nagle and Bonner® for ¢ >2 and large d. The effective spin-spin interac-
tion decays in a stair-step fashion and behaves roughly like 1/7%*°,

The partition function® is given by

Ld-1

0.50/d szd-l-y + Ld/2 1 21/231 Ld-1 dg] Ld-1
z=1I [2° Ip(O)J f exp|BmH2""%8; 14., =3QLq 90L/2 goL/z 3 (6)
p=0 -
where the recursion relations
L) = [27 exp[- K97 = 3@, (x +9) = 3@, (x = ) [dy, Q,,{x)==21n[L,(2" " /D"21)/1(0)], (1)

give the exact solution where K =J/~T and Q,(X) is determined by the assumed distribution of the V.

In this model every site is equivalent even though there is no translational invariance. Thus we can
without loss of generality consider the (V]_ v,-) spin-spin correlation function. By the use of Eq. (5) and
the spin symmetry of (4), as reflected by the fact that the integral in (7) is even in y, we can compute
directly that (j>1)

. La-1
(pyp==2""%s, +k21312-k-1<sl’k2> +2759G8; 14007, (8)
=1+

where we define I(j), j>1, by 2’ <j<2'*!, It is to be noted from (8) and the corresponding result for
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j=1 that the susceptibility per spin given by the sum rule

oLd
X/m?8N) = 35 vy vp) =3 1447 (9)
=1
is in agreement with the results of Ref. 6.

It follows from the definitions of the quantities involved that the calculation of (s, ;%) is obtained by
changing the Ith recursion relation [Eq. (7)] by inserting 20t/ )2 in the integrand and proceeding as be-
fore. The expected value (sl,,2> =Z,/Z, where Z, is the so-modified partition function. At the critical
point it has been found*® that the @, tend to a limit as p tends to infinity. Thus, in the short long-range
limit we expect {y?), to be independent of /. Hence

o/d
<V1 Vi)~ o™ [Z—_’E‘_aliil 2-(@mort/d y gmtd <31,Ld- 2. (10)
To evaluate the last term we must analyze the behavior of the @’s in the range where they are bounded
by some large but finite constant. From the recursion relations (7) it follows that @ ,(x) is even in x
and, for u chosen large enough, has any required number of derivatives at the origin. For o/d>% it
follows without difficulty that the @’s tend to a finite limiting function which behaves like x2¥/(¢= ) for
large argument.® For o/d <%, if we recall that the critical point is characterized by the vanishing of
the coefficient of 2/°/*»* in @ , and consider Q,(x) for the expanding region |x|< 21(0.3=0.50/d) " then we
find @, (x)=A2¢(2°/4"D) x4, where A is a nonzero constant, plus terms which vanish as p goes to infinity.
Thus, we may evaluate Eq. (10) by use of Eq. (6) as

2 2O/d_1 -(d=o)l/d 2 =L(d= o) 1
<V1Vj>'~(y>[§_—2'57—a}2 1y £ge12 , 0>3d,

2977 -1 =(d= o)1/ 2 - Ld/ 1
~(y? 507 2 O () 10127 P2, 0 <3d. (11)

We note that even when o <3d and @, — 0 for finite values of the argument, the term exp(—K»?) in the
integrand of Eq. (7) maintains a finite value of (y?). In the limit 4—, the coefficient of (y?) vanishes
and a spin-spin correlation proportional to 1/VN, where N is the number of spins, results. This re-
sult is exactly the same as the classical Bragg-Williams approximation.

We are now in a position to determine the index n. By definition, at the critical point,

(vguvg) < 1/ri=2+n, (12)

and by the definition of distance® in this model [¥l< 2/, Thus we conclude from (11) that =2 —¢ for
0<o/d<1 in accord with Eq. (1). The definition of Nagle and Bonner’s® index 7 is in terms of (1/1 LLd) .
In this case the summation term in (8) is omitted and the analysis given above may be applied directly
to the last term in Eq. (11). The conclusion is given in Eq. (1), which accords within the likely errors
to the Nagle-Bonner data.

From Egs. (5) and (6) and the definition of 8, it is clear that the index & is determined by @, ,(x) for
values of x of the order of an arbitrarily small multiple of 22(¢~ 2’2, For 5 >3d, the analysis of Ref, 6
for 6 is valid, and we have confirmed 6= (d+0)/(d —0) by the direct numerical calculation of the asymp-
totic behavior of Qu(x) for large x. When o <3d, the analysis we have given of Q,(x) after Eq. (10) sug-
gests that 0=3; however, the range of x treated is not large enough to be definitive. We have extended
this range by direct numerical calculations and verified this result in the extended range. Together
these conclusions give Eq. (2).

Equation (3) was found by evaluating the susceptibility and the magnetization in the thermodynamical-
ly prescribed manner, i.e. by taking first the limit N - «, followed by T —T_.. To facilitate this work
we note that when the system size 2"/¢ is large compared to the correlation length &, the spin-proba-
bility function exp[- @ u(x)J must be of the structure exp[— 27 (x)] when f(x) is of the order of unity.
Transforming our density function @, (x) back to the scale of the original lattice size,

U, (x)=27HQ, (2+(* @72 y), (13)
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we can then write the partition function of Eq. (6) as
ZH,T)=Z 14.(T)[" dxexp[—BmHNx = 5NU ,(2x)], (14)

where for 2% > ¢, U, (x) has minima'® which depend only on T. For N large we can perform the final

integral by using the saddle-point approximation. Expanding

ULd(lezx) ~ ULd(lezxo) +ULd”(21/2x0)(x - xo)2 +e°,

we then have
Lim x(T) = 3M>BN/Up," (2"%x,),
H—0
where we have x,=0 for T >T, and x,=M, the re-
duced spontaneous magnetization per spin, for
T<T..

Using the above formulas the spontaneous mag-
netization and the susceptability were computed
numerically to determine their temperature de-
pendences above and below T,. We find for d > 2o,
y=y'=1,000, 3=0.500 as expected. For d=3, 7
=0.06 as a comparison with the three-dimension-
al Ising model, we find y=9’=1.256, 3=0.3429,
with a numerical precision of £1 in the last place
quoted for all the preceding numbers. Thus we
find Eq. (3) to hold in these cases and all the
other cases we have investigated numerically.

Using the techniques described above it is also
possible to determine the spin-spin correlation
function once the fluctuations become small. For
T >T, we find,

2(1 -2" al/d
A 2(d+>¢§())l/d(1 — 2-(1)£{om) ’

)

(15)

(16) |

where ¥,=x/(m38N) is the reduced susceptibility.
Since 2/~ 7, we have a decay for » large, but
still small compared to the system size, propor-
tional to »~(*9) a5 expected,”® for 0 <o <d.

*Work performed under the auspices of the U. S.
Atomic Energy Commission.
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We have measured the surface electron density and the magnetic field dependence of
the extremes of the oscillatory quasiparticle g factor in a two-dimensional electron gas.

An experimental approach with which one can
measure the extreme values of the oscillations
of the quasiparticle g value, g*, of a two-dimen-
sional electron gas (2DEG) is reported. We also
report preliminary measurements which confirm
this approach.

Electrons or holes can be confined to the sur-
face of a semiconductor by the application of a
sufficiently strong electric field normal to the
surface. If the resulting potential well in the
semiconductor is steep enough, then motion per-
pendicular to the surface will be quantized. At

sufficiently low temperatures when the electron
scattering time 7 is large enough, such a system
of electrons may behave as a 2DEG which has a
density of states independent of energy. This
two-dimensional nature of the surface electrons
was shown by the experiments of Fowler et al.,’
who studied Shubnikov—de Haas (SdH) oscillations
of the electrons in inversion-layer conductivity
in a Si metal-oxide-semiconductor (MOS) struc-
ture in high magnetic fields. They found a con-
stant period of oscillation as a function of surface
electron concentration n,. The two-dimensional-
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