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Parametric Instabilities in Bounded Plasmas
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We have obtained conditions for excitation of parametric instabilities in bounded plas-
mas. Damping and inhomogeneity effects are taken into account. The results are found
to be of special importance for backscatter Brillouin instability.

Plasma parametric instabilities occur when the
pump amplitude exceeds a threshold which de-
pends on collisional effects or Landau damping.
It has been recently pointed out' that plasma in-
homogeneities could also stabilize parametric
instabilities by destroying the matching conditions
between wave numbers and frequencies. These
effects are thought to be important in the special
case of backscatter instabilities in a laser-irrad-
iated plasma. We want to demonstrate that anoth-
er stabilizing influence is provided by the finite
extent of the plasma region where the instability
can occur. Firstly, we notice that inhomogenei-
ties can stabilize the stimulated Brillouin scatter-
ing (SBS) only if a strong electron temperature
gradient is present. Numerical computations'
exhibit weak electron temperature gradients be-
cause of the large electronic thermal conductiv-
ity. Thus the effective threshold will be given in
this case by the finite length of the medium. Sec-
ondly it must be emphasized that according to
Rosenbluth's paper, ' only spatial amplification
can occur in an inhomogeneous plasma, so that
the threshold depends on both the inhomogeneity
and the size of the unstable region.

Therefore, in this paper we discuss the thresh-
old for parametric instabilities in bounded plas-
mas. At first, by neglecting wave damping, sta-
bility conditions are obtained for both convective
and absolute modes in a homogeneous bounded
plasma. If the group velocity of any of the decay
products is much larger than the other one, it is
found that the critical length for instability is
surprisingly short, but the normal-mode growth
rates are reduced. In such a case, a weak damp-
ing can modify these results. When plasma in-
homogeneity is taken into account, we have to
compare the amplification length to the plasma
length. Once more, a weak damping can increase
drastically the amplification length though the
net e-folding is not changed.

As in Ref. 1, we assume that three coherent
waves i= 1, 2, 3 are nonlinearly coupled and prop-
agate along the x axis. In the small-amplitude

approximation, the amplitudes of these waves
can be written as

A, =a, (x, f) exp[ —i(w, t —k,.x)+ if b, k,. (x) dx]

=y,a,*exp[if, X;(x) dx], (la)

Ba,*/Bf+ V, aa, */Bx+ I",a, *

= y,a, exp [- i f, X,(x) dx], (lb)

where R =Q, M, ; V„ F, and V„ F, are respec-
tively the group velocities and the linear damp-
ings of the two waves; y, is the growth rate of
the parametric instability in the homogeneous
case and can be taken as real and positive.

At first let us neglect F„F„and 3C(x) and
assume that y, is not negligible in a region of
finite extent l (0(x (f). To look for normal
modes, we set a, = o.,(x)e ' ' and a, *= o.,*(x)e ' '.
In order to fulfill boundary conditions at infinity
for unstable normal modes with ImQ) 0, we must
take o. , (x) = 0 for x(0 if V,. )0 and a, (x) = 0 for
x)/ if V,. (0. More generally, growing normal
modes which would not fulfill these conditions at
x =0 and x = l would be physically meaningless
since there would be an infinite energy input
from the outside into the plasma for I;- ~. Then
if V, V, )0, we cannot find unstable normal modes.
On the other hand, if V, V, (0, unstable modes
can exist and the roots of the dispersion equation

+ c.c.,
where the a, are slowly varying functions of x
and t, co, and k, are the real frequencies and
wave numbers which are linked by the linear dis-
persion equation at x = 0. The frequencies are
kept fixed, and the inhomogeneity is taken into
account by Lk, (x) in the WKB approximation.
We assume the resonance condition to be fulfilled
atx=0, so that++, =Qk;=M, ( )0=0. If wave
3 is the pump wave, the parametric instability
is described by the equations

&a,/&i+ V,&a,/ax+ I', a,
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are given by the following relations:

n=y, lV&V, I 'IV, —V
I

' ((+iq), (2)

with (=+ 2sinol'sinhPl' and g= —2c cosnt' coshPt',
l'= I y, /IV, V, i'~', where o. and P are solutions of
the two equations

sino. t ' coshPl' = e o. ,

sinhPl'cosat'= eP,

(»)
(sb)

with c =+ I and aPg0. If I'(v/2, there is no un-
stable root. If I' & m/2, growing modes exist with
Re(Q) = $ = 0. All unstable roots are such that E

=0, q&2 and q=+2 if I'»v/2. We conclude that
absolute instability develops in the bounded un-
stable region if

y, t jl V,V, I"»/2, (4)

but the growth rate remains always smaller than
2y„ iV, V, [~'/iV, —V, i which is precisely the growth
rate of the absolute instability in the infinite ho-
mogeneous plasma. ' From these results we de-
duce two interesting conclusions concerning the
backscatter Brillouin instability (photon -photon
+phonon). If the electron temperature gradient is
negligible, the threshold will be given by

y, & v(cc, ) 't'/2t, (5)

with

y, = o.(up, (u), /(u, ) 't',

where co~,. is the ion plasma frequency, ~, =k,C,
with C, the ion sound speed, a.nd n=eE, /m, ~,c
«1, E, being the pump-wave electric field am-
plitude. It is seen that the plasma is unstable
even if y, is smaller than the transit frequency
of the fast electromagnetic wave through the plas-
ma slab. Moreover, it is known' that the growth
rate of the parametric instability in the infinite
homogeneous case is given by (6) only when y,
&k,C, because a,. 'aa,. /at has been assumed to
be much smaller than u, in deriving Eq. (I).
Nevertheless the values of normal-mode growth
rates are much smaller than y, so that the same
approximation is still valid in the range k, C,
&y, &k, C, (c/C, ) '. Thus, we can use the thresh-
old (5) in that case. '

We recall that if V, V, &0, we can have only con-
vectively unstable perturbation. If we set a, = n
exp(rx+iQt) and a, *= o.,*exp(rx+iQt) where 0
is now real, we readily find that r has the largest
real part Re(r) =y, /i V, V, i

' for 0 = 0 which gives
an instability criterion similar to the criterion
(4) for normal modes (V, V, &0). This case (V, V,

&0) is of importance for SBS if the plasma expan-
sion velocity is larger than C, .'

The values of the normal-mode growth rates
are found to be much smaller than y, if i V,/V, l

» 1, so that these modes are expected to be eas-
ily stabilized by a weak damping. Therefore, we
now keep the damping rates I', and I', in Eq. (I)
but still neglect the mismatching K(x). We find
then from the dispersion relation that damping
does not affect the instability if

y, '»(I v, v, I/4)(r, /v, —r, /v, )',
2~, &or, r, .

(7a)

(7b)

For backscatter instabilities we have normally
i
I',/V, i «iI;/V, i where wave I is the electromag-

netic backscattered wave and wave 2 the longitud-
inal one, so that conditions (7a) and (7b) become
y, »y, »yr, where yr=(r, r,)' ' is the usual
threshold for the parametric instability growth
rate in an infinite homogeneous medium and y,
=(r,/2) iV,/V, i' . In this regime the instability
criterion reduces to condition (4). In the inter-
mediate regime where @~&go &, y„we find only
spatial amplification whatever the sign of V, V,.
The net e-folding (y, '/i V, i I, —I',/i V, l)l gives
then the excitation condition

(y„'/iv, i r, —r, /i v, [)t»I. (8)

~y, '/i V, V,X: i. (Io)

Then if V, V, &0, the e-folding length is given by

This e-folding is smaller than the one in the
undamped case: yoljlV, V, i

' since yo«I', iV,/
V~ I' . If yo(y2-, no instability can exist. Finally
we see that the e-folding length depends strongly
on the damping rate I', even if I",«y„provided
that i V, I « I V, I. For SBS, if we set I', = e ~,
(e, &1), the condition y, &y, becomes o. &2 'e,
x (k,A. D). This inequality can be fulfilled for mod-
erate-power laser beams when the ratio of elec-
tron to ion temperatures is not very large. In
this case, the condition for SBS excitation is

y, 'I/c I', » I

when the electron temperature gradient is negli-
gible.

We now consider the inhomogeneous plasma
case and want to take the mismatching K(x) and
bounded plasma effects into account. We special-
ize to the particular dependence R(x) =X'(0)x.
If the damping is negligible and the plasma is
unbounded, the e-folding has been found by Ro-
senbluth to be
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y, /IX'i (V, V,) ' which has to be compared to the
plasma length; if V] V2(0 it can be checked eas-
ily that the inhomogeneity does not affect the nor-
mal modes when y, /iR'ii V, V, i

'»I. Thus if
this inequality is satisfied the instability condi-
tion reduces to

yol/! V,V, !~2»1.

On the other hand if yo/iR' ii V, V, i '(I, bounded-
ness effects are negligible so that Rosenbluth's
criterion

»„ /! V, v,x!»I

must be applied.
As shown previously damping is important when

IV, i»IV, I and II,/V, i«ir, /V, l. Assuming in
the following we are in this case, we now consid-
er the effect of damping rates F, and I", on the
excitation of parametric instabilities in the in-
homogeneous bounded plasma. If y, »y, »y~,
damping is again negligible, and we recover the
previous results (11) or (12). In the intermediate
regime y~(y, (y„we must take damping rates
r, and r, into account in Eq. (1). We Laplace
transform in time Eqs. (1) with p the Laplace
variable; and putting

a, = e~(-,'i&'(0)x'- —,'[(p+ I,)/V, +(p+ r,)/V, ]x]F,
we find

d'I /dx'+ (-,'(R '(0)x+ i[(p + I",)/V, —(p+ r,)/V, ]j'+ 'i X—'(0) —y, '/V, V, )E = 0.

Only spatial amplification is possible in this case, and we can use the WEB approximation to solve Eq.
(1S). We put a small source at zero frequency at x =0 and the proper solution for a, is given by

a,(x) = a,(0) exp(—I',x/V, + (iy, '/! V, V,K '!) [ln(x/x, + i) —im/2]] (14)

o.I.r/k, kD&l (15)

is fulfilled, where Lr=[(d/dx)lnT, ]
' is the in-

homogeneity scale' and A. D the Debye length, the
bounded-plasma instability criterion (5) must be
used, i.e. , in terms of n,

o.(k,l) &2 '~'v(k, zD). (i6)

In the intermediate regime o. (2' 'e, (k,A. D), as
soon as the inequality

~sL~&l

is fulfilled the bounded-plasma criterion (9) must
be used, i.e.,

~(k,f)» (2"k,~ gn) 2"(k,~ g. (is)

In both cases, when the inequalities (15) or (17)

if V &0 x &0 and wlthx =
I r, /V, ii~'(0)l '

~

Whatever the sign of V, V„we obtain the same
net e-folding (10) as in the undamped case provid-
ed that y, )y~. This result was already obtained
by Perkins and Flick. ' The amplification length

x, is much larger than in the undamped case as
soon as y, «y, . If the plasma length I is smaller
than x, , the inhomogeneity plays no role and we
recover the previous condition for the homogen-
eous bounded system (4) or (8).

We apply these results to the stimulated Bril-
louin scattering. The damping is negligible if
y, »y„ i.e. , n»2 'e, (k,AD); and . as soon as
the inequality

—,'~~'(k, l.,) /(k, ~g' » i. (i9)

Comparing inequalities (16), (18), and (19), we
conclude that when the plasma boundedness dom-
inates over the inhomogeneity, the instability
conditions (16) and (18) are more severe tha, n

Rosenbluth's condition (19). It will be often the
case if L~»l.

Several of these results for SBS have been ob-
tained independently by Forslund, Kindel, and
Lindman. ' The threshold for the undamped ho-
mogeneous bounded case was found by looking
for a stationary solution of the full nonlinear set
of equations for the three waves. Their critical
length agrees with (16) within a numerical factor.
Nevertheless, the temporal stability was not ex-
amined and the growth rate was not given. In the
damped case these authors used the same method
as ours. The importance of damping in the in-
homogeneous case was not discussed.

Finally we emphasize that we have given the
instability conditions for all possible cases tak-
ing damping, boundedness, and inhomogeneity
into account. The results are of special impor-
tance when one of the two decay products is much
slower than the other one whatever the sign of
their group velocities.

The authors gratefully thank M. N. Rosenbluth

! are violated, the inhomogeneous unbounded-plas-
ma excitation condition must be used, namely,
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Nonequilibrium molecular dynamic simulation of liquid argon yields the strain-rate de-
pendence of shear viscosity. Near the triple point the apparent viscosity dec&eases with
increasing strain rate; the extrapolated zero-gradient viscosity is consistent with the
equilibrium Green-Kubo viscosity calculated by Levesque, Verlet, and Kurkijarvi. At
higher temperatures along the saturated vapor pressure line, our results are insensitive
to the strain rate and agree well with experimental data for liquid argon.

We have developed a nonequilibrium molecular-
dynamic method to simulate directly dense -fluid
transport. ' The shear -viscosity coefficient is de-
termined from a Couette flow where the bounding
planar fluid walls have steady relative velocity.
Systems of 108 and 216 Lennard-Jones particles
have been simulated' for real time durations (for
argon) of 10 "sec. The average flow velocity
has a linear profile, and when divided into the
wall shear stress determines the Newtonian
shear-viscosity coefficient q= —P„,/u„, . In—Fig. 1
our results are compared with experimental ar-
gon shear viscosity' ' along the saturated vapor-
pressure line of argon. The overall excellent
agreement indicates successful simulation of non-
equilibrium Couette flow with few-particle sys-
tems.

More extensive calculations have been made in

the triple-point region for comparison with a re-
cent equilibrium molecular -dynamic calculation
by Levestlue, Verlet, and Kurkijarvi (LVK).'
These equilibrium calculations use the Green-
Kubo relations to relate the transport coefficients
to time correlations of the equilibrium fluctua-
tions. An 864-atom Lennard- Jones system was
studied for 10 ' sec (for argon} with a shear-vis-
cosity coefficient of i)a'(m e} '"= 4.02 a 0.3 and
thermal-conductivity coefficient of Ao'(m/e)'~'/0
= 14.8 at Ao'/V = 0.8442 and k 7/e = 0.772 (for ar-
gon, a'= 8.405 A and e/k = 119.8'K).

Our nonequilibrium results for shear viscosity
at the triple-point region depend upon the velocity
gradient u„,. See Table I. Thus while the highest
velocity-gradient result is below the experimen-
tal argon results, the lowest velocity-gradient
result approaches the equilibrium molecular -dy-
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