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Can Surface Magnetic Order Occur~
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It is shown that the surface magnetic ordered state implied by mean field calculations
in the paramagnetic temperature region does not lead to a physically inconsistent spin-
wave spectrum below the surface ordering temperature, contrary to what would be ex-
pected if surface ordering were a purely two-dimensional phenomenon.

Several recent mean-field-theory calculations
of the behavior of semi-infinite magnetic systems
with one free surface have found that the suscep-
tibility is divergent at the surface in a regime
where the bulk system is still paramagnetic,
which implies that there has been a phase transi-
tion to a state of surface magnetic order. Such
results have been found for Heisenberg spin Ham-
iltonians with a stronger coupling between spins
in the surface plane than between other pairs of
spins' ' and in itinerant electron models. ' '
These surface magnetically ordered states are
presumably essentially two-dimensional (2D) in
nature. It has thus been assumed that they are
artifacts of an inconsistent 2D mean field theory,
since the spin-wave spectrum, in mean field the-
ory, of a purely 2D Heisenberg or itinerant elec-
tron magnetic system is physically inconsistent:
There is an infinite density of low-energy spin
waves. ' In this paper we shall consider the
mean-field-theory spin-wave spectrum of a Hei-
senberg ferromagnet in the surface ordered state
and establish a finite upper bound on the spin-
wave density. Hence the physical inconsistency
of 2D mean field theories does not apply to these
surface magnetic states and they cannot be ruled
out on theoretical grounds.

Consider a simple cubic lattice with a free
(100j surface and nearest-neighbor ferromagnet-
ic Heisenberg coupling between the spins. The
exchange coupling is J, between spins in the sur-
face plane and J between all other pairs of spins.
For J,&1.25J mean field theory predicts a sur-
face magnetically ordered state for T,'&T &T„
T, being the bulk critical temperature. ' ' An ap-
proximate calculation of the spontaneous magnet-
ization in this state yields' '

~ -K(l-&)
l

where l is an index labeling the crystal planes in

G;,;(t) = —f&(S (Rf, t)S-(R,, 0))&. (2)

Taking the Fourier transform of G with respect
to time and the direction parallel to the surface,
one obtains a function G(l, l'), with l and l' plane
indices (dropping the variables ~ and kg from
the notation). The mean field equations for G are

(cu —e, )G(l, f') +/SAG(2, f') = S,b, , i,

(m —e, ) G(l, f ') +JS,[G(l + 1, /') + G(l —1, &')]

where

e, =JS(j~„+e '),
))2

7 7

e 6 11+2 cosh),

e ti
= 4 —2 cosk„—2 cosk„

(3a)

(3b)

(4a)

(4b)

(4c)

where j=J, /J; and k„and b, are components of
k, i

in units of the inverse la.ttice spacing. These
equations can be solved by an infinite interation:
Defining the continued fractions a, (u) and b, (u)
in terms of the recursion relations

a (co) = [N —tg —cf S(Sg a (G2)]

bi(M) = [K —Cg —4 SgSi ibl -l(N)]

b&(M) = ((d —6&)

(5a)

(5b)

(5c)

(the a, 's are infinite continued fractions and the
b, 's are finite continued fractions), one finds

the direction perpendicular to the surface, which
is at E =1, $, is the spontaneous magnetization in
the lth plane, 5 the spontaneous magnetization in
the surface plane, and $ is a temperature-depen-
dent and coupling- constant-dependent inverse
range.

The spin-wave spectrum for the surface or-
dered state is obtained by considering the Green's
function

G(l, l') =S,a, (&u) g [a ((u)/b, ((u)][ Q (—1)' "6„,. H JS b„(~)+ Q (-1)' "6„, H JS~ ((u)1, (6)
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FIG. 1. Solid curves, plot of ai (~). The dashedslanted line is &u —ei, the dashed vertical lines indicatethe poles
Of a&+&(Cd).

where I use the convention
n-1

The spin-wave spectrum for the surface mag-
netically ordered state is given by the poles of
the functions a, (&u) and b, (&u). Let us concentrate
on the spectrum of a, (e), which will give the
spin-wave density in the surface plane. Since e
&2 cosh) & 2, let us use the approximate inequal-
ity e '«1 in the subsequent analysis. The fur-
ther assumption that exp(- $) «1 enables us to
arrive at a reasonably simple form for a, (m).
One then finds that

consider

a '((u) =(v —e —J'S'e """a ((u)

plotted in Fig. 1. This function has simple poles
at ~ = ~,+„"', n ~ 1, and the zeros of a, ' are the
poles of a, . Since a, +,(~) is relatively slowly
varying for ~= e„one may evaluate it at c, to
find

(u,
' =~,[1 +0(e «/s')]

H ~i+„' is very close to ~i+„'" the pole in Eq
(8) st ~ = cu, +„'+' will be the dominant term in de-
termining ~,+„'. Approximating the other terms
in a, '(u&) by their value at &u, +„"'one finds, us-
ing exp(- $) and e ' small,

ai(~) + Rl+8 /(+ +l+5 )t
n=0 t+l(1 6 an) (10)

satisfies Eq. (5a) for l & 2. To demonstrate this,

This result does give co, +„' much closer to ~,+„'"
than to any of the other poles in a a, '(~), justi-
fying the single-pole approximation used to es-
tablish Eq. (10). To complete the demonstration
that Eq. (7) is an approximate solution of the re-
cursion relation, one must calculate

l [I y J2S2e t (2l 1) Q (e E/e2)m(~ l ~ l+ 1) 2] 1

For n =0 all the terms in the sum are of order
exp(- $)/e' or smaller, giving R, ' =1 in agree-
ment with Eq. (7). For n & 1 the dominant term
in Eq. (11) is m =n —1, where the frequency de-
nominator is smallest, giving

' =(e &/e )"[1+O(c '")]

again in agreement with Eq. ('I).
Equation (I) is valid for l ) 2; a somewhat dif-

ferent result applies to a, (~) because of the pos-
sibility that z = e, /JS may be less than 1. It is
then possible for ~, to be less than ~,'. This
turns out not to be a serious problem since all
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it does is confuse the ordering of the high-fre-
quency spin-wave modes in g, . Since e & 2, no
matter what the value of ~~~, these modes will
give a finite contribution to the surface spin-
wave density. I thus concentrate on the poles at
+„', n ~1V, where cV is at worst R la, rge but finite
integer such that &u„' & e, . A plot of a, '(v) in
this frequency range will then be very similar
to Fig. 1 and an analysis similar to that above
yields

a ~[1 & -~{a-x)/(& & -2)) (12)

where p(e, ~) is the planar density of states. A
conservative upper bound on the sum in Eq. (14)
is obta. ined by using Eqs. (12) and (13), with ~„'

all evaluated at ~
I~
=0. This gives an ~pp~r

bound proportional to exp[- (2N —9)$]/JS on Eq.
(14). Hence the contribution of the low-energy
modes to the spin-wave density in the surface
plane is finite, contrary to the result which holds
for a purely 2D system.

The approximations which have been used in ar-
riving at this finite upper bound on the spin-wave
density have principally resulted in a. consistent
overestimate of the R~+ r~s For large n thi. s can
not have a, serious effect, even if one relaxes the
conditions exp(- $) and e '«1, since the shifts
obtained are of order e '"«1 in any case. The
major changes due to keeping all powers of
exp( —$) and e ' will occur at small n There, .
so long as exp(- $) and s '- a.re less than one,
these changes will be of order unity, i.e., the
worst that will happen is ~„„'=no„„,n of or-
der unity if n is small. Using this as a, starting
point Rnd 1 epeRting the anRlysls of the spectx'uD1
of a, (~) for ~„„'at larger n one arrives at a. fi-
nite upper bound on the spin-wave density in the
surface plane. Furthermore, I have carried out
a continuum approximation to Eqs. (3), appropri-

where we have kept an O(e ') correction. If
c 'i" "/(z —e ') «1, Eq. (12) is consistent with
the assumptions used in deriving it and one finds

(e-5/s2)n-&~4/(a@2 ])2

The minimum value for se' —1 is exp(- 2$),
which occurs when e

t~

= 0. Since this is finite and
positive, Eqs. (12) and (13) will be correct for
large enough n.

The contribution of the low-frequency spin-
wave modes to the spin-wave density in the sur-
face is proportional to

f«ii&(sic) Z R (14)

ate to the limit $«1 or exp( —$) s 1, which yields
the same result as the above analysis: a finite
density of low-energy spin waves. In addition, I
have confirmed that the thermodynamic limit of
a true semi-infinite system is essential for the
result: The application of the above analysis to
a film with a finite number of planes gives an in-
finite density of low-energy spin waves. Details
of these calculations will be given in a future pub-
lic Rtlon.

I have shown in this paper that one of the ob-
jections to the mean field theory prediction of
surface magnetic order for semi-infinite Heisen-
berg ferromagnets is not valid: Surface magnetic
order is not a purely 2D phenomenon and the
physical intuition one has, based on the behavior
of purely 2D systems, may not be appropriate
for surface phenomena in semi-infinite systems.
%whether surface magnetic order can actually oc-
cur requires a more exact theoretical treatment
than mean field theory, but my conclusion that
the fluctuations about the spontaneous magnetiza-
tion do not have an infinite density should also
hold in more exact theories. Hence I expect
these more exact theories of critical behavior to
give surface order for a sufficiently large value
of J,/Z. Note that the spherical model with short-
range forces is similar to the Heisenberg model
in that it does not order in the bulk unless the
thermodynamic limit is taken in all three dimen-
sions; preliminary results of a study of the
spherical model with an increased exchange in-
teraction in the surface plane' show a surface
phase transition before the bulk transition when
the thermodynamic limit is taken in all three di-
mensions.
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