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turn, to coincide with a desired value of E. The
entire operation requires~260 sec on an IBM
370/168, for three values of E.

The resulting values of u, and U;, are shown
in Table I, together with the matrix elements for
dipole excitation from the Hartree-Fock ground

state,
18

18
Dy = rjsro\pa*(sz)\Ifonl d*,,

i=1 i=

(11)

and with the experimental values of the same pa-
rameters from Ref. 9. The differences of calcu-
lated and experimental values are not surprising
in view of the inaccuracy of fitting in Ref. 9, and
of the known importance of electron correlations
—neglected here— for the excitation of Ar. The
U, show the eigenchannels a=1, 2,3 to consist
mostly of d orbitals with LS coupling (*D, ‘P, 3P,
respectively), while @=4, 5 correspond to s or-
bitals with 3P and P coupling; the D, values are
accordingly large for singlet-singlet transitions
only.

Calculation of the R matrix by the alternative
methods of Refs. 7 or 8, followed by its diagonal-

ization, should yield equivalent results.
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The entire spectrum of hydrogen in combined static and periodic electric and magnetic
fields is derived by using O(4) algebra, and related to the corresponding simpler Lyman-
o spectrum by a scaling relation. This time-dependent generalization of the Stark-Zee-
man effects provides the necessary basis for the proper analysis of hydrogenic spectra

for plasma diagnostic purposes.

In this Letter we provide a full description of
the characteristics of the entire hydrogen spec-
trum under the influence of timewise periodic,
but otherwise arbitrary, electric and magnetic
fields. Within the framework of certain physical
approximations, valid over a wide range of
parameters, these results constitute a nonpertur-
bative exact solution to the problem, based on
Lie-algebraic methods, and thus remain valid
for many physically interesting situations, in-
cluding resonance domains,? where perturbation
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methods fail. One of the important areas where
the knowledge of such spectra is required is plas-
ma diagnostics by hydrogen spectroscopy, where
the atoms are under the influence of combined
time-depencent and quasistatic electric fields.
Such situations arise both in laboratory plasmas®*
and astrophysical plasmas (solar flares).®

The Blokhintsev® theory describes the effect of
simple dynamic electric fields; its inadequacy
when both static (or quasistatic) and dynamic
fields act simultaneously was pointed out by us
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earlier.! In that paper we presented the main re-
sults for the Lyman-a spectrum for the case of
a static and a linearly polarvized dynamic field per-
pendicular to the former. However, the modifi-
cation of the Balmer spectrum®* (which requires
the description of higher-n levels) is of greater
practical importance. Also, the more general
physical situation would certainly require under-
standing the effects produced by static and dyna-
mic electric fields (a) in arbitrary directions,
(b) of arbitrary polarization, and (c) possibly in
conjunction with static or dynamic magnetic fields.
These, and related, problems provide the motiva-
tion for the present paper.

Our main results are as follows. There are
only two types of basic spectra: For {ype I,
which obtains for example when all the electric
fields are coplanar and there is no magnetic field,
(a) the n?-times~-degenerate » multiplet of energy
E, splits into 2n -1 equally spaced quasilevels,

€np =E, + UKy, ;L:—(n—l),...,O,...,(n-l), (1)

plus a harmonic satellite structure €,,*7w at in-
tegral multiples of the basic frequency w of the
dynamical fields. (b) The basis spacings k, for
various #’s are related to each other by a simple
scaling relation, which allows one to determine
the entire structure of an arbitrary » multiplet
from the knowledge of the spacing for the much
simpler Lyman-a problem. For the fype-II spec-
trum, which prevails for example if the electric
fields are not coplanar, (a) the remaining degen-
eracy is now completely removed, resulting in »?
distinct quasilevels,

€nptym = En+ LK+ K,
=E,+(p* +u )0, + (" = u0)o,,
’J'+yu'-: -%(n - 1);—%(’7’ - 3)’

vy3n=1),

@)

plus the harmonic satellite structure at »w around
these levels. The second expression for €, may
be viewed as a fine structure with spacings 6,,
superposed on the previously described type-I
spectrum with spacings o,. (b) The basic spac-
ings k,* are related to the spacings «,* of the cor-
responding Lyman-a problem which in turn are
expressible in terms of the Lyman-a spacings «,
for an equivalent type-I problem. For both types
Iand II, (c) a strong enough magnetic field, in
addition to the effects described above, further
splits each level into a spin doublet.

We consider in the following (1) pure electric

fields, (2) pure magnetic fields, and (3) combined
electric and magnetic fields, which are periodic:
B(t+1)= E(t), Bt +7)= -l§(t). (This does not re-
strict the fields to be monochromatic, nor does

it exclude static fields.)

(1) For pure electric fields, the field-depen-
dent part of the Hamiltonian is H, = - ¥+ e¢E(t),
which in general has inter-n-multiplet as well as
intra-n-multiplet matrix elements. The influence
of the former on the dynamics of the system is,
however, negligible as long as the splittings in-
duced by the imposed field within each #» multi-
plet (and the basic frequency of the field) re-
main small compared to the inter-»z separations.
Therefore we concentrate on the intramultiplet
dynamics.

As a consequence of the O(4) symmetry™® of the
hydrogen atom, the vector K=M@ne'/2\E,|)!"2,
where M is the Runge-Lenz vector, can be identi-
fied on the » multiplet with the position vector T,
in the form® ¥ =3na K, where q, is the Bohr ra-
dius. Thus, on the » multiplet

H=-F+eE=K+8, &,=2na,ek. (3)

Also, K and angular momentum i satisfy the
standard commutation relations of O(4), [K;, K]
=€, Ly, [Li, Kj]=i€;55Ky, [Li, Lj]=i€i5, Ly

(1a) If the electric field vector E(f) at all times
remains confined to some given plane (designated
the x-y plane), the Hamiltonian H, can be re-ex-
pressed in terms of an angular momentum opera-
tor, by constructing® J = (K,, L,, K,), which satis-
fies [J;, Jj]=1€;

H,=3-3,(). “)

The resulting Schrédinger equation for the evolu-
tion operator U,(t) for the » multiplet constitutes
a set of #® linear equations with periodic coeffi-
cients, thus imparting a Floquet structure® to the
solution:

U, (0) - E exp(= ik PA(0), (5)

where P,(t) are periodic matrices and {&,} are
constants, to be determined. The #® eigenvalues

of U,(7) can be shown to form the set {exp(ik,7)}.

To determine the {kq}, we note that the solution

for U,(t) can also be written in the Magnus form,!o%

Un(t): exp[_ Znn(t)]’ (6)

where ©,(f) is expressible in terms of quadra-

tures of repeated commutators of H, at different
times. Since the components of J form a closed
Lie algebra, it follows that the evolution opera-
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tor necessarily has the structure'!
[jn(t) = exp[— lj ¢ Eﬂ(t)]7
U,(7) = exp| - iJ * B,(7)] = exp[ - i JsB(7)],

where J; is the component of J in the direction of
the vector B,(7), and B,(f) is a unique functional®!
B of 8,(),

B(t) =B [E]=B[8,). ®)

The entire spectum can immediately be inferred
from the structure of U,; detailed knowledge of
B, is not needed for this purpose. U,(7) is clear-
ly diagonal in the #»® (angular momentum) basis
states Inju): J2=j(j+1), Jy— . The eigenspec-
trum of U,(#) is then given simply as exp[—i i
XB,(7)]; we can thus identify the set of n? Floquet
constants as {£} ={uk,}, k,7=B,(7), p==-1),

.,0,...,(n =1); there are only 2jy,, +1=2n~1 dis-
tinct values of %,, all integral multiples of the
basic unit x,. The spectrum is degenerate with
respect to j, resulting in a multiplicity » — |ul.
The time dependence of U,(¢), Eq. (5), with this
identification of {kq} immediately leads to the
“energy spectrum” of type I, where the quasilev-
els arise from the Floquet exponentials, and the
harmonic structure arises from the periodic
parts.

The dynamics associated with the type-I spec-
trum is determined by the fact that U,(¢), Eq. (7),
generates a simple time-dependent rotation of
the initial states by the angle S,(f) around the di-
rection of B,(t). The n? states of the n multiplet
decouple into # independent completely nondegen-
erate j multiplets, and

Q)

n=1
U,= 2, eU,9 .
i=o
In view of Egs. (8) and (3), A, (f) and thus the
basic spacings k, for the different » multiplets
obey the scaling relation

Bu[E] =B [(n/n)E],
K B] = koo [(2/n")E].

In particular, with the choice »’' =2, we can infer
the full spectrum as well as the dynamics (i.e.,
the harmonic structure) of an arbitrary » multi-
plet from the solution for the Lyman-a problem?!
by a simple scaling by #/2 of the amplitudes of
the physical electric fields.

(1b) When E(¢) does not remain confined to a
plane, the Hamiltonian K '3,, cannot be re-ex-
pressed in the simpler 3-3,, form, and because
of the commutation relation of K the resulting

(9)
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Magnus solution for U,(f) contains all six genera-
tors of the O(4) algebra. A more convenient char-
acterization of U,(!) can however be obtained in
terms of the commuting angular momenta _G+
=3 +K), G.=3(L-K):

i@ /otW,* = (G, +8,)0*,

Un = Un+Un- = exp(— _é+ °En+) exp(— —é- * En-)y

Bl =BxE,].

The spectra of U,(7) are individually of the angu-
lar momentum form, {expiu*k,* 1)}, Tk,* =B, (1)
On the # multiplet,®*? G ,%= (% - 1), and thus we
are led to the type-II energy spectrum, Eq. (2),
with a large spacing 0,=3(k,* +«, ) and a finer
spacing 0,=3(k,* —k,”). Since a mere change of
sign of the functional argument can result in a
significant change'! in the structure of B, B,*(7)
#B,7(7) in general. Consequently, the degeneracy
of the » multiplet is now completely removed.
This results from the breaking of the symmetry
of the Hamiltonian; now [H, J2]#0. This also
mixes the j multiplets which were independent
for a planar field: U(f) is no longer reducible.
Whenever 8,*(7)=8,7(7), a type-II spectrum re-
duces to a type-I spectrum, with the states of
same p* + 4~ becoming degenerate.

(2) For pure magnetic fields (time-dependent
Zeeman effect, including arbitrary static fields),
the Hamiltonian in the dipole approximation, ig-
noring spin which is accounted for separately, is
H,=®+L, ®=(e/2mc)B. The ensuing evolution
operator U(f) = exp( il * B[®]) evidently leads to
the type-I spectrum, irrespective of whether B(f)
remains coplanar or not, in contrast to the case
of the pure electric fields. The identity of the
basic Zeeman splittings for all levels is also in
constrast to the scaling, Eq. (9), of the Stark
splittings.

(3) For combined electric and magnetic fields,
the Hamiltonian and the evolution operator take
the forms

(10)

H=K --8,, +L-®
=G, @+38)+G.- (&-13,),
Uy (t) = exp(-i G,  B,*) exp- iG.* B,”),
Bt =B[B=3,].

(3a) The special case where E(f) remains pla-
nar (x-z plane) and B(¢) is normal to this plane
can be described by the simpler form H=J --5’,, ,
Fr=(8x B,8,2), and the spectrum remains of type
I, with KnT:Bn(']); Bn:B[gn]'

(1)

(12)
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(3b) The simple case of combined static Stark-
Zeeman effect has the spectrum, immediately
inferred®® from Eq. (11),

Eqprp- =B +8 [+ [® =8 ,]. (13)

For perpendicular fields, this reduces to €,,

= (®%+8,2)2, which is the degenerate type I. For
parallel fields, it is type II with the larger (small-
er) spacing equal to the larger (smaller) of the
two effective fields.

(3c) In general, the combined time-dependent
Stark-Zeeman effect produces a spectrum of type
1I since Bl® +8,] #8[® - 8 ,], except for special
situations, some of which have been described
above. However, the entire spectrum and dynam-
ics for any level can always be inferred from the
corresponding information for Lyman-a by scal-
ing E by #/2 and leaving B unchanged.

The conditions for the validity of our results
are the following: (i) The field-induced splittings
exceed the fine-structure splittings, i.e., E>91/
n* kV/cm, or B> 124/n® kG. The latter condi-
tion also ensures the doublet spin structure (com-
plete Paschen-Back effect) described above un-
der (c). (ii) The mixing of levels of different =
is negligible, i.e., the quadratic Stark-effect
term is small compared to the linear one (E «<7
x10%/n° kV/cm), and w «<10%® sec™?, the natural
level separations. (iii) The coupling with the ra-
diation field can be ignored, i.e., w>10° sec™?,
the inverse lifetime of the fastest decaying state
within a multiplet.

The line spectrum resulting from type-I and
-II level structures has the following features:
(i) The type-I line spectrum for the transition
n—-n’, apart from the harmonic structure, is
basically static Stark-like with (2n-1)(2n' -1)
independent components at { RK, — u’x,,.} modulo
w. Since k,/k, #n/n’ in general, the spacings
between the shifted components are, however,
not integral multiples of a basic unit spacing,
and also the special degeneracies of the static
Stark effect such as in Hg (where n=2x') are re-
moved. (ii) The type-II line spectrum for n—n’,
apart from the harmonic structure, contains
n®n'? independent components together with har-
monics at multiples of w, which on a gross scale
appear as a type-I line spectrum at {uo,, - u’o,,,}
(u=p*+ "), but with a finer structure governed
by 6, and &,,, (iii) The spin doubling of the mul-
tiplet levels in the complete Paschen-Back do-
main has no effect on the line spectrum because
of the absence of spin-flip transitions.

Regarding the experimental implications of the

present theory, these results would apply direct-
ly to the situations where the fields are macro-
scopically generated and are uniform over the ob-
served sample. For turbulent plasmas, the high-
frequency field originates from electron plasma
oscillations, while the quasistatic field arises
from low-frequency, typically strong ion-acous-
tic turbulence, as well as the usually smaller
quasistatic Holtsmark fields. Different atoms
see fields which differ in magnitude, direction,
and phase, and whose statistical distribution de-
pends on the specific nature of the turbulence.
Thus, the observed spectral profiles are to be
obtained by an averaging of our preceding results
over the appropriate field parameters, leading

to a turbulence broadening of the spectral lines,
different in character from and often exceeding
the broadening caused by other mechanisms (Dop-
pler, Holtsmark, etc.). Then it is the precise
shapes of these turbulence-broadened lines which
carry the diagnostic information on the turbulent
plasma fields.

Calculations pertaining to state structure, tran-
sition probabilities, and line intensities, as well
as a diagnostic analysis of the observed Balmer
spectrum from a turbulent plasma,® will be the
subject of forthcoming publications.
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The Kapitza thermal boundary resistance at temperatures near 1 K is anomalously
small to solid *He or solid *He just as it is to liquid *He or liquid ‘He.

The measured Kapitza thermal boundary resis-
tance Ry between two solids is generally in good
agreement (=~10%) with the acoustic mismatch
model of thermal energy exchange at low temper-
ature.!”® In this model the reflection and refrac-
tion of thermal phonons at the interface is calcu-
lated by use of classical acoustics. Even Ry to
liquid He may be explained in terms of acoustic
mismatch at temperatures below ~0.1 K.2 An ex-
planation of Ry to liquid He at temperatures of
21K, however, remains elusive. No theory in-
troduced thus far can explain the very small mag-
nitude of R,*"® the small pressure dependence,*
the fact that transverse phonons in the solid effi-
ciently transfer energy to the liquid,” ® and that
the thermal impedance is qualitatively indepen-
dent of whether the liquid is ®*He or normal or
superfluid *He.'°*! The purpose of the present
Letter is to correct a fallacy which is intro-
duced'®'*? in searching for an explanation of R
at =1 K, namely that the anomaly occurs only
when liquid He is present. Ry to solid He at =1
K is not in agreement with the acoustic mismatch
model, it is also anomalously small. Hence the
anomalous behavior is not to be associated solely
with properties of the liquid.

The experimental arrangement for measuring
Ry was similar to that of Anderson and Johnson.'?
Two closely spaced 2.5-cm-diam plates of elec-
tropolished Cu were separated by a thin layer of
He. The thermal impedance of the sandwich, 2R,
was measured under conditions of constant heat
flux. Some of the data thus obtained are shown in
Fig. 1 as RT3 to emphasize the T "3 temperature

1580

dependence predicted for R, by the acoustic mis-
match theory. Data below 0.3 K were obtained in
a dilution refrigerator; data above 0.4 K were ob-
tained in a different cell in a 3He refrigerator.
The dashed lines represent previous data ob-
tained in a magnetic refrigerator using an elec-

tropolished Cu cell of completely different geom-
10

etry.” Near 1 K the present data agree with pre-
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FIG. 1. The Kapitza resistance between Cu and He,
Open circles, liquid *He; closed circles, solid *He;
open triangles, liquid ‘He; closed triangles, solid ‘He.
The sample pressure for liquid He was =0 atm, for
solid He ® 37 atm. Curves 4, B, and C are for liquid
He, liquid He, and solid *He, respectively, as ob-
tained from Ref. 10. The dotted lines represent calcu-
lations using an acoustic mismatch theory.



