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Variational Calculation of R Matrices. Application to Ar Photoabsorption*
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An ab inNio analytic Hartree-Pock procedure is introduced which yields directly eigen-
values and eigenvectois of an R matrix to be matched with data extracted from different
spectroscopic experiments. Besults of a pilot calculation are presented.

The net effect of complicated short-range inter-
actions between one particle and a compact ag-
gregate can be summarized by the boundary val-
ues of the particle's wave function on a surface
8 that envelops the aggregate. The effect of addi-
tional long-range forces can then be worked out
by solving the Schrodinger equation for the single
particle's motion outside S. This concept was
embodied in signer's proposal that many-body
theories of nuclear scattering should aim at cal-
culating an R matrix. ' In atomic and molecular
problems the long-range forces are predominant-
ly central and Coulombic when the "aggregate"
is a positive ion; they are then treated analytical-
ly by the quantum-defect theory (QDT).' (Non-
Coulomb forces require further work but are dis-
regarded here. )

Use of the A matrix in atomic problems by
QDT permits (a) joint treatment of bound Rydberg
states of an excited electron and of its unbound
scattering states, and (b) interpolation between
energy levels, transition probabilities, and scat-
tering amplitudes of all these different states in-
sofar as the A matrix depends weakly on the total
energy of the system. This interpolation proper-
ty has been exploited extensively by our group as
a device for unified representation of very di-
verse experimental data in terms of eigenvalues
and eigennectoxs of an A-type matrix. ' Each

eigenvector 4 can be viewed as a particular su-
perposition of ion plus electron states with alter-
native angular momenta and couplings, largely
independent of the degree of excitation. Accord-
ingly, it identifies a whole channel of excitation
rather than individual levels; attention has been
directed to "eigenchannels" in nuclear physics
too.' The eigenvalues are expressed conveniently
as quantum defects p. , even though they are
seldom observed directly in this form. These
eigenvalues and eigenvectors serve well as inter-
face for comparing ab initio theory with experi-
mental evidence because they constitute a mini-
mal but comPlete set of spectroscopic and scat-
tering data.

Ab initio calculations of A matrices have been
scarce. The traditional analytical approach
utilizes a set of eigenfunctions whose truncation
suffers from notoriously slow convergence. This
difficulty, experienced in recent atomic applica-
tions, "has stimulated the search for alternative
approaches in the present work and in indepen-
dent model studies. "We outline here an ap-
proach that yields the 8 matrix directly in its
diagonal, physically significant form, and we
compare the results of a pilot calculation to ex-
perimental evidence.

Consider, for simplicity, the variational ex-
pression for stationary states of a single particle
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within a sphere of radius Fp,

5J„&„g*(r)[—2V'+ U(r) —E]g(r)d'r=0, (1)

where U(r) is an arbitrary self-adjoint potential operator. Integration by parts changes Eq. (1) into

&(- —,'r, ' J„[g*(r)sg/ar]„„dn+ f„„j,'I V-q(r)l'+ [U(rg -E]l q(rg['j d'r)=0.

We incorporate the surface term formally into the volume integral by a ~-function notation, rewriting
Eq. (2') as

&f,=, +BI &C(r)l' —2&(r ro)-0*(r»e/Br+ IU(r) -E]l Cl'] d'r= 0, (2a)

where the limit r,+ specifies that the integration includes the singularity of the 5 function.
This variational problem over the finite spherical volume yields a discrete set of energy eigenvalues

when complemented by a boundary condition at r= ro. Familiar boundary conditions are P(ro) =0 for a
reflecting wall and (Bg/Br)„„,= 0, the "zero momentum" condition; both are special cases of the ho-
mogeneous condition

[Bg/Br+ bg(r)]„„=0,

which assigns a value b of the normal logarithmic derivative. %e regard b as a constant parameter,
unless otherwise stated, but an arbitrary real function b(r) of the position r on the boundary would be
acceptable. Substitution of (3) reduces Eq. (2a) to the form

„,,4f-,'~4(r)f'+ [-,'I 5(r —r, )+ U(r) -E]fg(r))'j=O.

The traditional procedure for calculating an R matrix may start from this equation„assuming an arbi-
trary value of b and calculating the spectrum of energy eigenvalues and eigenfunctions.

Here we stress, instead, the symmetry of Eq. (4) with respect to interchange of b and E. Each of
them enters (4) as the coefficient of a volume integral of I g(r II' multiplied by a non-negative weight
function, which is —,5(r —r, ) for b and unity for E. (We are indebted to F. Calogero for this remark
Therefore we may use the variational equation (4) to determine a complete set of eigenvalues b and
eigenfunctions 4„, for any fixed value of the energy E, instead of determing a complete set of E~ and
4z for any fixed b. The set of 4 is orthogonal and comPlete over the weight function 25(r —ro'), i.e.,
in effect over the boun~ay r = r, . Hence the calculation of a scattering or bound-state wave function
of the particle in the outer region, r -r„can start from boundary values expanded in the form g(ro)
=Q c„y„(r,), (Bg/Br)„, = Q„c„b„—+„(ro) In this .expansion the b and 4 (r, ) play the role of eigen-
values and eigenvectors of the "logarithmic derivative, "or A, matrix. Scattering states are degener-
ate, with the expansion coefficients c„depending on boundary conditions at r=~; bound states are
identified by g(~) = 0 and exist only for discrete values of E. (The simple example of a single particle
in a central potential yields a single eigenvalue b for each angular momentum. )

The eigenvalue problem for 5 has the following mechanical interpretation. The term —,b6(r —r, ) in
Eq. (4) may be regarded as representing a mock potential barrier (or "moat" when 5 &0) whose effect
increases Sg/Br discontinuously from a value —bg at r = ro-, i.e., just inside the barrier, to the val-
ue zero at r= r,+. That is, b identifies the height of the mock barrier required for the Schrodinger
equation to be solvable with given energy E and with zero-momentum boundary condition at ro+. The
required height is b/(, with $ & 0, for a thin square-well barrier,

0 for r&ro —g~(r ro )-o-
1/$ for ro-$~r~ro.

(5)

In this representation the eigenvalue problem consists of determining the mock-barrier height for
fixed E and fixed (mock zero momentum) boundary condition.

The applicability of this point of view is amplified by the remark that Eq. (4) is readily transcribed
for an n-particle system enclosed in an arbitrarily connected region of its configuration space. We
regard now r=(r„r„.. . , r„] as a vector of this space and define the volume of integration as the locus
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of positive values of a function S(r), enclosed by the surface S(r) =0. Equation (4) takes the form

6f, &,'I-Vg(r)l'+bb~(S)+ U(r) -&]lg(r)l'jd'r =o,

to which the preceding discussion applies as well. This remark opens the way to direct calculation of
eigenchannel properties utilizing the variational approach to finite-volume many -particle Schrodinger
problems to any desired degree of refinement.

One of us (C.M. L.) has utilized Eq. (6) for calculating essential properties of the set of odd-parity,
J= 1, bound and ionized states of Ar atoms with energies up to -20 eV above the ground state. The re-
sults are given here with details to follow elsewhere, These states are regarded as combinations of
an Ar' ion, in either level of its doublet ground state PBIg»2 and of an electron in an s or d orbital.
Alternative combinations, inclusive of spin, yield five distinct channels:

i= ]. 2 3 4 5
(7)

Pj.&2d~&2 P3~2d»2 Ps&eds» P»2S~&2 Ps»S j.&2

Quantum-defect analysis of experimental data for this system' has led to the quantitative characteriza-
tion of five eigenchannels, a= l, . . . , 5, as superpositions of the channels i defined by Eq. (7). The
properties of these eigenchannels have now been calculated ab initio in a Hartree-Pock approximation
for comparison with the data obtained in Ref. 9.

%ave functions for continuum eigenchannel states of energy E are represented schematically by

e =a+,C,.F,.(r), (8)

where 8 indicates antisymmetrization, 4,. consists of Hartree-Pock wave functions of Ar+' combined
with the angular and spin parts of the excited-electron's wave function in accordance with (7), and F,.
is a radial function for this electron, which remains to be determined by our variational approach.
Bound-state wave functions are superpositions of 4~ which converge at r- ~ only for discrete energy
eigenvalues E, but whose essential part at r ~r,—are calculated for arbitrary E just as for the con-
tinuum. At radial distances exceeding a limit r, —5-10 a.u. , the QDT provides the analytical form' s~

F, (r) = U, [f,(r) cos (w p ) -g,.(r) sin(w p )] for r ~ r, .

F, (r)=Q„c„, v„,(r), (10)

Here f, and g,. are regular and irregular Coulomb
wave functions for electron energy E -E,, E,.
being the Ar' energy level in the ith channel; the

V, are elements of a 5~5 orthogonal matrix,
Both p. and U,. remain to be determined.

The expression (9) of F,„for r ~ ro im. plies that
satisfies the boundary condition (8) with a pa-

rameter b(p„, F. —E,)w, hich dep. ends not only on
but also on the energy E —E, of the electron

at large x. In adopting a different value of b for
different channels i we depart, but only in detail,
from our earlier development. For r ~ra, F, (r)
was represented as the superposition of Slater
base functions v„,,

surface only, the system was solved first with
trial p, 's to obtain eigenvalues E~ and eigenvec-
tors (c„;~t~~, U~ J~~). The value of p~ was then
varied iteratively to bring each of five Ez, in

Quantum def'ects p. ~ ~+ 0'(E-EG), and dipole elements, D

(Experimental values in parentheses, i'rom rei'. 9. )

1 2 5

V 0 ( ~ )

D (a. u. )

.19(.22) .01 (.07) .51(.50) .12 (.15) .07(.11)

.08 ( .05 ) .00 ( .02 ) . 04 ( . 07 ) —.01 ( —.01 ) —.01 ( —.02 )

.03(.03) -2. 1(-2.1) -.01(.12) —.05(.00) 1.0 (1.4)

TABLE I. Ar (&"=1 ) parameters at the P&y& thresh-
old, E=&0.

with coefficients restricted by the boundary con-
dition (3), with the appropriate b, and by normal-
ization. Substitution of (8) and (10) into (6) yields
a system of linear homogeneous equations in the
coefficients c„,. and U, with parameters p, and
E. The integrations over r, involving quadratical-
ly the products 4~v„, (r), were . done by standard
numerical procedures. To optimize the variation-
al fit over the whole volume, rather than on its

70 .59

.77

, 25

Gale.

. &9

r,4

.72

. 00 .00 —.15

. 00 —.01 —.10

T ran si'o rma t ion ma t r ix U.ia

. C8 . 01 '

—.10 .01

.01 —.64 .28 .72 ~ 00 . 02

.00 .00 . 02 .82 —.58

.00 .00 —.02 .58 .82

Rei. 9

.70 .60 . 38 .00 . 01

.75 —.58 .00 —.02
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turn, to coincide with a desired value of E. The
entire operation requires -260 sec on an IBM
370/168, for three values of E.

The resulting values of p. and U,. are shown
in Table I, together with the matrix elements for
dipole excitation from the Hartree-Pock ground
state,

and with the experimental values of the same pa-
rameters from Ref. 9. The differences of calcu-
lated and experimental values are not surprising
in view of the inaccuracy of fitting in Ref. 9, and
of the known importance of electron correlations—neglected her"- for the excitation of Ar. The
U,. show the eigenchannels e= 1, 2, 3 to consist
mostly of d orbitals with 18 coupling ('D, 'I', aP,
respectively), while o=4, 5 correspond to s or-
bitals with 3I' and 'I' coupling; the D~ values are
accordingly large for singlet- singlet transitions
only.

Calculation of the 8 matrix by the alternative
methods of Refs. 7 or 8, followed by its diagonal-

ization, should yield equivalent results.
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The entire spectrum of hydrogen in combined static and periodic electric and magnetic
fields is derived by using O(4) algebra, and related to the corresponding simpler Lyman-
& spectrum by a scaling relation. This time-dependent generalization of the Stark-Zee-
man effects provides the necessary basis for the proper analysis of hydrogenic spectra
for plasma diagnostic purposes.

In this Letter we provide a full description of
the characteristics of the entire hydrogen spec-
trum under the influence of timewise periodic,
but otherwise arbitrary, electric and magnetic
fields. Within the framework of certain physical
approximations, valid over a wide range of
parameters, these results constitute a nonpertur-
bative exact solution to the problem, based on
Lie-algebraic methods, and thus remain valid
for many physically interesting situations, in-
cluding resonance domains, "where perturbation

methods fail. One of the important areas where
the knowledge of such spectra is required is plas-
ma diagnostics by hydrogen spectroscopy, where
the atoms are under the influence of combined
time-depencent and quasistatic electric fields.
Such situations arise both in laboratory plasmas '

and astrophysica. l plasmas (solar flares). '
The Blokhintsev' theory describes the effect of

simple dynamic electric fields; its inadequacy
when both static (or quasistatic) and dynamic
fieMs act simultaneously was pointed out by us
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