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frequency polarizability tensor, », scales with other
measures of (Pz) . The proportionality between &o'. and

nematic order is direct with no need for local-field cor-
rections. Similarly, the Raman data for (Pz) are in
excellent agreement with other data. for (Pz) without
introduction of local-field effects. The empirical fact
that local-field corrections are not necessary for either
of these measurements can be rationalized as follows:
Local-field corrections depend on dipole-dipole summa-
tions over neighboring molecules. Although the pro-
blem can be solved in a number of ways, the answers

are ultimately dependent on near-neighbor correlations.
Near-neighbor correlations appear to be relatively in-
sensitive to temperature implying the same about the
local-field corrections. In the present case the ratio
alb in the isotropic phase, which should also reflect
local-field effects, was measured to be independent of
temperature and we assume the same value applies to
the nematic phase. The (P&) data support this assump-
tion.

~~&& was obtained from our refractive index measure-
ments and the Vuks equation" (see Ref. 8).
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Recent remarks on the possibility of negative-pion condensation in superdense nuclear
matter are shown to be based on an incorrect formalism. The possibilities of & and n.

condensation are compared and some problems are enumerated which must be solved
before it is known which, if either, of the phenomena can occur.

In an interesting recent Letter, mainly con-
cerned with neutral-pion condensation in super—
dense nuclear matter, Migdal has made some re-
marks on the possibility of a charged-pion con-
densation. ' However, his treatment is based on
a formal approach which is untenable for the
charged-meson problem.

At the very beginning of Ref. 1 it is stated that
the critical condition for n condensation in a
neutron gas is given by the solution to the equa-
tion

k '+ m, ' —tz'+ II( tz, k) = 0.

Here p. = p„—p, ~ is the difference between the
neutron and proton chemical potentials; k is the
wave vector of the n mode; II(m, k} is the proper
polarization part for the m propagating in the
neutron medium. Migdal further states that in
the limit of a vanishing number of pions (and pro-
tons), just above the critical density, the param-
eter p, =

JLjj,„—p~ will be equal to the Fermi energy
of the neutrons.

I shall demonstrate below that Eq. (I) can be
used to derive the critical density when the cor-
rect value of p. is used. But the correct value of
p, is so different from e„F that Migdal's remarks
based on this equation have no relevance to the
m problem. The chemical potential difference
p„- p~ must: be derived dynamically from the

formula for the condensation energy. Even in the
case of infinitesimal pion density, p. will differ
from ~„by a finite and large amount. Further-
more, one can look directly at the energy of the
system to see that the solution of (I), with e
= e„, is unrelated to any phase transition.

Since the m, m' condensation problem has been
treated elsewhere in some detail' ' for realistic
values of the parameters, I discuss here a limit
M~-~, in which the problem is trivially solva-
ble and which illustrates the important points of
principle.

The m polarization operator in a free Fermi
gas of neutrons, calculated to second order in
the pion-nucleon coupling constant f, comes di-
rectly from the crossed graph with an intermedi-
ate proton and is given by

II(&u, h) = —2f 'h' p/vnz, ',

where p is the density of neutrons. If one looks
at Eq. (I}, takes p, = eF -0 (as Ms-~), and uses
the expression for II given in Eq. (2), it will be
found that there mill be a solution for arbitrarily
small values of f, h, or p, in the limit Ms-~.
That is, in the static limit a m condensation is
predicted for arbitrarily small coupling, or den-
sity.

To show that this is a defect of the formalism
and not a pathology of the static limit, consider
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II(x) =i(p&u„/2)'"[(X+ Y)'" —Y'"]e"', (4)

where &u~= (k '+ m„')'~'. These fields represent

the energy of a pion-condensed electrically neu-
tral system, with the charged-pion field given by
the function

cp(x} =(p/2&@„)' '[(X+ Y}' '+ Y' ']e'"'

and the canonical momentum given by'

a mixture of a condensed mode of n with wave
number A2 and of m' with wave number -4z. The
quantity (X+ Y}p is defined as the density of m

particles and Fp as the density of m'particles,
where p is now the total nucleon density. Thus
if the system is to be electrically neutral, the
proton density will be Xp.

Let us now write the formula for the energy due
to the presence of pions which comes directly
from the Hamiltonian in our static model:

(H, ) = jd'x [II+(x}II(x)+ Vcp"'. Vq + m, 'y* y]
~ i2'"fk m, ' fd'~ [(n t(x)o,p(x) ) y (x) —(p t(x}v,n(x) ) y*(x)],

where n and P are the neutron and proton field operators. One can derive an upper limit on the abso-
lute magnitude of the space average of the quantity (n (x)o,p(x)) which is valid, independently of the
nucleon mass, for any state of the system of nucleons:

I«n t(x)o,p(x)))l - px'"(I -x)'".
To prove (6) consider the field

~(x}= X'"n(x}—(1 -X)'"o,e ' ~'" P(x)

and note that

0 ~ (~ t(x)&u(x})= X(n tn)+ (1 —X)(p tp) —X'"(1—X)'"(n t(x)o, p(x)) e' ~ "'

—X'"(1—X')'" (P t(x}o,n(x})e

Let us choose y(xI = -arg(nt(x}o, p(x}), whence

2X' '(1 -X}' 'l«n ter, p))l ~ (1 -X')(p tp) +X(n tn) = 2X(1 —X'),

which gives Eq. (6). Substitution of (3), (4), and (6) into (6} gives

(H )-pV((x+ 2Y}u, —2[(X+ Y)'"+ Y'"][1—X]'"m 'p'"X' '&u '"fk)

(6)

(7)

(8)

(10}
and it is clear that for small p, k, or f the pionic
energy cannot be negative. Since a second-order
phase transition will be characterized by the van-
ishing of E„we have established that Eq. (1)
with p, = e„ is not the correct critical condition.

It is easy to find the state in which the equality
in (10) is realized, and this will be the exact
ground state of the system. Consider a new field

U(x} =(1 -X)'"n(x}—iX'"v3e'"'p(x}

P eiq x Y "1/2
a a

and construct the electrically neutral state'

le, )=H, U, 'lo). (12)

A direct calculation of (+,lHl 4, ) gives back (10)
with the equality sign. This is the static limit of
the condensation energy given in Ref. 3 and gives
the critical density p, = m, '&u, '(kf) '3 '".

The value of the m chemical potential p. ,- at
the critical point can be obtained directly from
the energy formula by rewriting it at the critical

density as an independent function of the numbers
of the three kinds of particles,

Z,= ~„[N,+N — „,(N, '"+N '"}N,'"j, (13)
2

and differentiating to obtain

p, „-=&E,/&N =3 '"ru„ (14)

where in the last step I have used the threshold
ratio of N~/N, =4W3 —6=0.92-8 [as determined
by imposing the constraint A, =N -A~ and mini-
mizing (13}with respect to N~/N ].

From (14) it is seen tha. t p, ,- is still finite and
large in the static limit, contrary to the asser-
tion of Ref. 1. Equation (1) is now satisfied when
(2) is substituted, if ~ = p = p, - is given by (14)
and p by p, .

In the m condensation problem, in contrast,
there is no parameter p, . Equation (1) with p, =0
gives the correct critical condition for weak vP

fields. We are not allowed to take the static lim-
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it in this case since II(0, k) as calculated in per-
turbation theory has energy denominators which
go as M~ i. In the m case the denominators
which arise all have a term, L(. in them, numeric-
ally considerably larger than nucleon kinetic en-
ergy terms for the physical nucleon mass, and
this allows the taking of the static limit.

These differences reflect the very different na-
ture of the nuclear wave function in the two cas-
es. In the m case the nucleon density remains
uniform and the density-density correlation func-
tion remains the same as in the case of no pion
condensation. As shown in Ref. 3 this is not only
true in the free Fermi gas but also in the pres-
ence of any nuclear forces which are spin and
isospin independent. Thus the force which is
most responsible for determining the nuclear
wave function, the hard core, can be taken into
account completely in the m case.

In the m' case the opposite is true. When nu-
clear forces are left out the neutrons rearrange
themselves extensively in order to minimize the
interaction energy with the w' wave. The m' wave
is necessarily a standing wave (since the m' field
is self-conjugate) and the neutrons are inclined
to move to where the pions are concentrated. The
fact that the second-order perturbation calcula-
tion gives an interaction energy proportional to
M~ is imply a reflection of the fact that the neu-
trons can be rearranged very easily, since they
are so heavy. In this case nuclear forces can be
taken somewhat into account, e.g. , by the use of
effective mass. But the effect of the nuclear
wave function, in particular of the correlations
due to the hard core, has not been taken into ac-
count in Ref. 1 in any way which is nearly as con-
clusive as in the m case.

There is another important respect in which the
work on the m case reported in Ref. 3 is more
complete than the work on n' reported in Ref. i.
This is in the pionic corrections due to all of the
other modes of the pion field except for the con-
densed mode. These were evaluated to order f
for the m case in Ref. 3.' They cost a good frac-
tion of the condensation energy and raised the
critical density a great deal. The analogous cal-
culation has not been carried out for the m case.
An important point brought out in the w case was
that these corrections are not given correctly by
taking the expectation value of the one-pion-ex-
change potential in the state of the nucleons de-
scribed above. There is in addition a large term
of order f which comes from the change in the
ordinary self-energy part X-X+n -X when the

nucleon is immersed in the pion-condensed me-
dium.

I do not wish to use the above points to argue
that m condensation mill occur and n will not.
Neither case has been analyzed sufficiently to
allow a, conclusion. My point is that many as-
pects of the problem have been analyzed more
thoroughly in the 7t case than in the m' case.

There is, furthermore, a serious doubt about
what a n' condensation really means. Once the
translational invariance is broken in the standing-
m'-wave case, the system is a sort of one-dimen-
sional crystal with the neutron spins alternating
on successive planes such as to lower the energy
through the spin dependence of the one-pion-ex-
change potential. One can call the wave of pion
field generated by these sources a condensed m"

mode if one wants to. But is this state really
preferred to a three-dimensional crystalline
structure with spins alternating on nearest neigh-
bors ~'

It should be noted that in the neutron-star prob-
lem one is at least as interested in the properties
of the matter at densities considerably above the
critical density as one is in the region just above
onset. There is also the possibility that when all
of the effects have been put in, the transition will
be of the first class. For either of these prob-
lems the Migdal approach to the vr' case is of no
help. The perturbation theory in the strength of
the condensed field fails for pion concentrations
which are quite small (see Ref. 3). For strong
m' fields the correct calculation is a simple one-
dimensional band-structure calculation which
could be done numerically (analogous to the stand-
ing-wave m calculation given in Ref. 8, but sim-
pler).

One thing which can be proved analytically in
the case of a m' condensation in an otherwise free-
neutron gas is that a m r' repulsion is not neces-
sary to stabilize the system. This is in contrast
to the view expressed by Migdal' and by Barshay,
Vagradov, and Brown. " The point is that for
small values of y„o the potential-energy term and
the free-pion energy term go as p„2 (i.e. , like
N, ), and it looks as though a collapse might occur
when the coefficient is negative. However, for
large p 0 the negative potential term goes like
y„o (or v'N ) while the free part of the energy
still goes as N ~„" Thus the number of ~"s sat-
urates. This is another illustration of the neces-
sity of solving the problem with strong pion fields
as was done for the 71 case in Ref. 3 and has yet
to be done for the m' case.
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We have calculated vacuum-polarization charge densities to all orders {Zo.Po. for real-
istic nuclei of finite extent. In muonic Pb, orders yg -3 contribute —34+ 2 eV to the 5g

4f transitions, compared with the point nucleus value of —50 eV. This inc~eases the
discrepancy {first reported by Dixit et a~.) to E{theor) -E{expt) =57+ 18 eV {5'(2 4f ~g2)
and 72+ 21 eV (5g&l, —4f,l2) . Contributions to low-lying states show nearly an order-of
magnitude reduction.

A variety of recent and planned experiments
have spurred renewed interest in the problem of
vacuum polarization (VP). Most prominent among
these is the measurement of energies of high
transitions in high-2' muonic atoms, as reported
by Dixit et al. ~ and also by Backenstoss et al.
and%alter et al. ' Two of these particular exper-
iments, which involved very high precision (50
ppm), exhibit a persistent discrepancy of more
than 2 standard deviations from theory. The the-
ory requires a number of delicate considerations.

One of the most uncertain theoretical contribu-
tions has been the higher-order (n~3) VP, which
was evaluated for a point nucleus. The work re-
ported here shows the inadequacy of such an ap-
proximation even though the relevant muonic or-
bits are well outside the nuclear radius.

Other muonic-atom studies require the calcula-
tion of higher-order VP effects. As an example,
transitions involving the 1s state are claimed to
measure the nuclear polarization, but previous
calculations show that higher-order VP effects


