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It is demonstrated that nonorthogonality effects can play a very important role in multi-
step processes involving successive particle-transfer reactions. This is shown for the
particular example of the ( IIe,d)-(d, t) process, where nonorthogonality terms can be in-
cluded as a renormalization of the effective interaction for the direct ( He, t) charge-ex-
change process.

Recently, the importance of successive one-
particle pickup-stripping ('He-n-t) processes in
('He, t) reactions has been demonstrated by sev-
eral authors, ' ' These calculations, based on
the second-order distorted-wave Born approx-
imation (DWBA), showed that inclusion of the
'He-n-t and He-d-t processes can explain many
observed anomalies in ('He, t) cross sections
which defy explanation in terms of the single-
step, direct charge-exchange mechanism.

All the calculations done so far, however, neg-
lect the so-called nonorthogonality correction, ' "
which arises because inner products of basis
state functions describing different mass parti-
tions do not vanish. The aim of the present work
is to propose a method to deal with this basis
nonorthogonality in the coupled-reaction-chan-
nels (CRC) formalism' and to discuss its conse-
quences, taking as an example the (sHe, t) reac-
tion. We shall show that the effects of nonorthog-
onality can be very large.

Here, we closely follow Ref. 4, where the CRC
equations were obtained neglecting nonorthogo-
nality effects. In order to take into account these
effects we are led to distinguish between two
types of CRC distorted wave functions, x„(r„)
and X (r ), defined respectively as

where 14) is the total state function of the system

and I o) is the channel ba.sis function, describing
the intrinsic state of the projectile a and nucleus
A. Thus I a)—:I aA) —= g, ($, )g~($~), where $, and
$„are the sets of internal coordinates of sys-
tems a and &, respectively. We shall consistent-
ly use the notation (nl) to mean that only an in-
ternal coordinate integration has been performed,
with the channel radius r being held fixed, i.e. ,

In principle, the full set of basis states I a) is
overcomplete. If all the bound and continuum
states for one mass partition were included, then
the states of all other mass partitions could be
expanded in terms of that one set. In practice,
however, one must represent the total state func-
tion with as few terms as possible, and thus al-
ways the basis is drastically truncated. The
scheme of the CRC approach is, then, that a de-
scription in terms of a few states of different
mass partitions of the system gives a much more
useful representation of the total system state
than an expansion in terms of a vast number of
states of a single mass partition. At the same
time, problems of overcompleteness are avoided
by the drastic truncation.

Because of the nonorthogonality of the different
basis functions I n), the distorted waves X and
X cannot be assumed to be identical, except in
the asymptotic region. They are connected through
the relations (I) and (2); indeed, if Eq. (2) is in-
serted into (1) we obtain

x (r ) =gg(o'lxa(ra)ltI& =Ps fd'r8(etio)xa(ra), (4)

where in the overlap integral (o.'I p) both channel radii are held fixed. That is, the integration is over
the particular set of internal coordinates common to both channels, $;, only. Specifically,

n n 8 8 8

We define the nonorthogonality function N„s(r„, ra) by

(nlP) =5„85(r —r )s+N„(rs„, r8),
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so that Eq. (4) may be rewritten as

X (r„)= X (r ) —Z s fd r s V„s(r, rs)Xs(rs). (7)

Kith this relation, we can solve for ~ in terms of y formally or numerically, for instance by an iter-
ative method.

It is now straightforward to establish the coupled-reaction-channel equations for the functions y. In-
serting Eq. (2) into the full Schrodinger equation,

we get, making use of Eq. (7),

(T +v -F )x (r )= Q-fd'rs(~IV —v Ip)xs(rs)

+ p jd'rsd'r), (o-'IV„—V
I p)Vs)(rs, , rr)xr(r, ). (9)

B,y

These are the CRC equations as obtained in Ref. 4, with an additional term on the right-hand side
(rhs) which arises from nonorthogonality.

In order to understand the effect of the additional terms in Eq. (9), let us use the second-order
DWBA, which has been shown to be a good approximation to the amplitude given by the full CRC equa-
tions for the pickup-stripping process ('He, e) (o. , -t). ' The transition amplitude for (a, P) is generally
obtained by solving an inhomogeneous equation for the final channel p, which we write explicitly as

(Ts+vs &s)x—s(rs) = —fd'r (plVsl&)x "(r )+ fd'r, d'r&'d'r pi&(pl Vsly)&, (ry, r, ')(ylV, lo)x~"'(r~)

+ fd r&d'r„W~r(PIVsly)N&„(ry, r )y„" (r ). (10)

Here, 6 &(r&, r&') is the optical-modeL Green's function for the intermediate projectile, and )I„'l(r„)
is the entrance-channel distorted wave, obtained from the optical-model Schrodinger equation, (T
+ V —E„)y„ l(r ) = 0. Finally, Vs and V& are the effective-interaction potentials associated with the
direct (n, P) reaction and the (y, P) [or (n, y)] stripping (or pickup) process. In deriving Eq. (10) we
have consistently retained terms only up to second order. Thus, we replaced X~ by y in the third
term on the rhs, which is the only new term The .first term on the rhs describes the direct (n, P)
process, while the second gives the second-order (a, y)-(y, p) contribution, ' ' obtained by taking p=y
on the rhs of Eq. (9) and using

(T&+ V& Ey)zz(r—y) = —fd r&(yl Vzl o)y. ("(r~).

The transition amplitude for (n, P) obtained from (10) can be written as

Bcf 8n + 8n + 8n
(& ) (2) (IIo)

where

Ts„")——fd rsd r ys l(rs)(plVsln)y i '(r„),

T s„~'l -- —fd'r sd'r zd'r ~' d'r„Q z)ts("(rs)(pl Vsl y)~ q(rq, rz')(yl V, I
o.')y."l(r.),

Ts„'"'=—fd'rsd'r~d'r Qz&ts"'(rs)(PIVsly)&ya(ry r )y "'(r )

(12)

(13a)

(1 3b)

(13c)

T &
', T &

', and T &
"' are the contributions coming from the first and second DWBA and the non-

orthogonality correction, respectively.
An important remark which should be made at this stage is that the explicit form of T~ "' will de-

pend on whether one chooses the post or the prior form for the interaction matrix elements in TB„' ."
Thus, for instance, if one uses the prior-post form for the (3He, n)-(n, t) process, instead of the post-
post form occuring in Eq. (13b), the nonorthogonality correction actually vanishes; i.e. , the term giv-
en by (13c) is formally canceled by a term that appears when the transformation is made from the post-
post to the required prior-post form. "

Summarizing the resultant nonorthogonality term for the four possible choices of the effective inter-
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action potentials, we get

T 8„~"'~ = 0 (prior-post),

Ts ~"'~-——Q&fd'red x&d~r ys~ ~(rs)Ns&(r~, r&)(y~V„~n)y„~o~(r„) (prior-prior),

Ts "'~= —Q&fd'red r&d'r„)ts'~(r&)(P~V&~y)N&„(r&, r )X
' (r„)

—Qy Jd rsd'red r X8' '(rs)Ney(rs, ry)(y(V~~a)y„~'~(r ) (post-prior),

TB '"'= —Qz fd'sad'red v ys"~(rs)(P~VB~y)N&„(ry, r )y„'o~(r„) (post-post).

(14a)

(14b)

(14c)

(14d)

—fd'&sd'& Xs"'(ra)(PI V«l&)X~"'(r~)&(r~ —ra),

where

V g g + g(r r )(o. (n). o (f))(&(n). 7.(i))

with i denoting the ith nucleon in the target nu

us A and
cle-

approximation introduced before, and the result
can be given in the same form as Eqs. (15)—(17)
with the following two modifications: 5(r„—r;)
-5(r —r, )V(r;), where V(r) is the potential bind-
ing the picked-up proton to the target; and Dp+0

40 Even with these modifications, it is diffi-
cult to make an estimate of the effective interac-
tion volume of the resulting "direct" amplitude.
However, it is clear that the net effective inter-
action resulting from both these terms is still
attractive. Thus, in order to get a rough idea of
the importance of the nonorthogonality correc-
tions, one may simply compare the estimate aors
= —2020 MeV fm with the corresponding values
used in the direct ('He, t) DWBA calculations of
the past. With a Yukawa two-body interaction
having V =20 MeV and a range parameter of 0.73
fm ', as suggested by the direct ( He, t) analysis
of Kossanyi-Demay et aE. ,

"one obtains 640 MeV
fm'. On the other hand, studies of the (P,P') and

(P, n) reactions suggest an effective two-nucelon
interaction with a volume integral of 125-250
MeV fm'. "" We are forced to conclude that,
even if the estimate of the nonorthogonality con-
tribution is correct only to within an order of
magnitude, the nonorthogonality term will in gen-

a„= (—)' (3/[8(2s+ l)])D,a,.
Also 0, is either the unit operator or the spin
operator, for s =0 or 1, respectively, and 7 is
the corresponding isospin operator. Do and 4,
are the zero-range constants given by

D, = fd'~ Jd'py, (p)V«q, (r, p)

and

~.= fd'~ J d'p v. (p)m~(~, p),

p, and p„being the triton and deuteron internal
wave functions, respectively. If use is made of
the values Dp ———183.6 MeV fm and h, o

——29.3
fm' ' obtained by Bassel,"we get Qyp 2020
MeV fms for s =0, implying that the resultant ef-
fective interaction arising from nonorthogonality
is attractive, in contrast to the repulsive inter-
action for the direct, charge-exchange process.

The second term of Eq. (14c) can be estimated
in a similar way. Note, however, that the inter-
action matrix element is given in the prior form
instead of the post form ordinarily adopted for
calculating the ('He, d) process. Nevertheless,
one can estimate the term using the zero-range

As is well known, practically speaking it is always necessary to use the post form in calculating the
stripping process, while the prior form is necessary for the pickup process. Hence, for the calcula-
tion of a two-step process such as ('He, o.)-(n, t), we have to use the prior-post form. Thus, we have
no nonorthogonality correction term. However, if we also include the ( He, d)-(d, t) process, ' we
must use the post-prior form and pay the penalty of two nonorthogonality correction terms'

To study the importance of these nonorthogonality corrections, we made a simple estimate of the
terms in Eq. (14c), based on the zero-range approximation for the overlap integrals involving light
projectile wave functions. We consider the (~He, d)-(d, t) process as an example. s'' Using the approx-
imations we have enumerated, and noticing that in any realistic calculation' ' all of the intermediate
nuclear states C which can be reached from the target ground state A. and which lead to the specific
nuclear state B are in fact included, the nonorthogonality term can be put into the same form as the
direct term, with a 5-function interaction potential. Thus, for instance, the first term of Eq. (14c) is
written as
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eral make a very sizable contribution to the ( He,
t) amplitude. The general effect would be that, in
second-order DWBA or CRC calculations which
ignore the nonorthogonality correction, the direct
amplitude would need to have the wrong phase
relative to the two-step terms in order to fit the
data. This phase difficulty has already been no-
ticed in a number of instances. "'

Such effects of nonorthogonality are by no means
restricted to charge-exchange reactions, but
would be expected to manifest themselves in any
reaction with a significant multistep contribution.
For example, recent calculations for successive
nucleon-transfer processes in heavy-ion reac-
tions clearly show the importance of the nonor-
thogonality contributions. ' '

Better estimates of the nonorthogonality con-
tributions to the cases we have discussed require
full finite-range treatment of the overlap inte-
grals. Detailed calculations are now underway
by the present authors.

We are indebted to Professor T. Tamura for
valuable discussions. Comments and suggestions
from Dr. P. D. Kunz, Dr. N. B. De Takacsy, and
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We construct a simple optical potentia1 for nucleus-nucleus processes by a folding
method. With these potentials, we have obtained high-quality fits to a variety of elastic-
scattering data. We also successfu11y reproduce one-particle transfer data. However,
two-particle transfer results may indicate the need for further refinements of the model.
In addition, we calculate the bound states of an o-'+ 0 folded potential. There is good
agreement with experimental energies and o' widths for two +-cluster bands in

A simple folding model, where the optical po-
tential is given by a convolution of the target
density with an effective nucleon-nucleon inter-
action, is quite successful in the description of
nucleon-nucleus elastic scattering. ' In view of
the considerable amount of heavy-ion elastic
scattering and transfer data which has recently
become available, it seems particularly rele-
vant to study the application of this simple and

physically appealing technique to heavy-ion pro-
cesses. A generalization of this model to nu-
cleus-nucleus interactions yields an optical po-
tential of the form

2mb'f
V', p, (r) = — — Jd'~' p,(r' —r) p, (r').

In Eq. (1), p, and p, are the projectile and target
total densities, respectively, I is the nucleon


