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Strong Langmuir turbulence is described in terms of a random set of blobs of self-
trapped plasma waves. The interaction of these blobs leads to the generation of power
spectra (lE& ~2) ~ k 2 that agree with the results of one-dimensional computer simulation.

The strongly turbulent regime is of great im-
portance in the heating of plasma by high-current
relativistic electron beams or by powerful la-
sers. Indeed, in both cases an important process
by which the energy of the beam or the trans-
verse electromagnetic wave is converted to plas-
ma energy is via Langmuir oscillations. If the
input power and pulse duration are large enough
the energy density of oscillations may become
very high. The applicability of weak-turbulence
theory is restricted by the condition

W/nT & (kXn)',

where 8" is the energy density of the oscillations,
nT is the thermal energy density, k is the typical
wave number of the oscillations, and A, D is the
Debye length. If this condition is not satisfied,
the characteristic rates of nonlinear interactions
5u-~~(W/nT) become greater than the frequency

spread due to thermal effects 5&@~-u~(kh. n)2; m~
= (4nne'/m)"' is the electron plasma frequency.
It has been shown' that the Langmuir spectrum
is unstable with respect to low-frequency density
perturbations when W/nT & (4kXn)', where &k is
the width in the k spectrum. For the case bk/k
«1, this instability is identified with the decay
instability or at higher amplitudes with the oscil-
lating two-stream instability. In the opposite
limit 4k-k, when the resonant conditions cannot
be satisfied for the entire set of k in the spec-
trum, only the modulational instability of Ref. 1
can exist. Thus even when W/nT «I, strongly
correlated states may be a feature of Langmuir
turbulence. There exist, then, the problems of
the dynamics of such a turbulent state, of the dis-
sipation of wave energy, of beam-plasma and
laser-plasma interactions in this regime, etc.

Processes of this kind were investigated in
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some detail by Zakharov. 2 He suggested that
strong Langmuir turbulence should be described
not in the Fourier representation but in terms of
strong nonlinear waves or "solitons. " The strong-
ly turbulent state is likely to consist of a set of
steady or quasisteady "blobs" localized in space
with random positions. A one-dimensional (1D)
example of such a theory is given by Rudakov. ~

The basic equations describing Langmuir turbu-
lence are'

WL =Nb = (487/nT) I y NE (N)/2p (6)

The characteristic soliton sca.le length k, ' turns
out to be

roughly the same amplitude but with arbitrary
positions in space. If the characteristic time for
the energy density fluctuation 6W is much great-
er than (&u~ W/nT) ' we may postulate that W
= const. Thus the soliton amplitude & depends
upon the number of solitons N through

. 8 5n-
V ~ i —E+-co A. 'VV ~ E I= —e V ~ —E

82

, 6n c,'V'6n—=

(2)

(2')

The maximum number of solitons in I- is restrict-
ed by the condition of close packing:

N- k'OL,

l.e. )

where 5n is the low-frequency plasma density
perturbation, E is the complex amplitude of the
high-frequency electric field, and c, = (T, +yT, /
M)'~' is the sound velocity. In a 1D system a
stationary solution of Eqs. (2) and (2') for v, &c,
which has the form of Langmuir solitons is giv-
en by

and

E(x, t) =E sin(kx —~t)/cosh(k, $);

$ =x —v t, v =3k'.n'u, ~,

kgn =E /(48wnT )'~',

&u =u&~(1+ 2'kX 'o- E'/32nnT).

(3)

Its amplitude & and propagation velocity v de-
termined by k are independent of each other. The
energy of each soliton is

= f"dgE'/4m = (48nnT)'~'A. + /2m.

The Fourier expansion of the soliton (3) is

E(x, t) =sin(kx —&ut) f dk' cos(k'$)E~i,

with

E,' =E /k, cosh(2wk'/k, ).

At the present time a number of 1D computer
simulation studies have been performed in the
strongly turbulent regime. ' ' It is interesting to
compare the turbulent spectra, (IE~I)' o:k ' ob-
tained in Refs, 6—8 with the consequences of the
concept of a random set of solitons described in
Ref. 3.

Let us construct a 1D model in which we have
a set of N solitons in a length L where I can be
so chosen that within I- most of the solitons have

N~,„=(I /2v'6) (W/nT )~1'(L/A n). (8)

Note that if the N solitons had coherent phases
and positions the factor N in the integrand would
be replaced by N' We may. replace the (coshx) '
term by a step function which cuts off the integra-
tion at N, = 3 (e'/T')(WL/k). Thus we obtain

(IE~I') = (12T /Le') f dNNP(N). (11)

It is interesting to note that we obtain just the re-
sult of the numerical simulations if we take P(N)
= const, which gives

(12)

If this spectrum is introduced in the quasilinear
velocity diffusion coefficient D(v), then we obtain
D(v) ~v. Before discussing the reasons for this
particular choice of P(N) we give a brief consid-
eration of the 3D problem. From Eq. (2) the
same dependence, viz. kokn~E, „/(nT)'~', is ob-
tained as in the 1D case. But as of this time we

If N«N, „(r raefied packing) the Fourier com-
ponents of the spectrum of each soliton can be
written as

E„(N)=E (N) (ko(N)coshl 2mk/ko(N)] j
Let us introduce the probability P(N) for the sys-
tem to be in the N-soliton state and furthermore
regard these N solitons to have random phases
and positions. The Fourier power spectrum of
the entire N-soliton state is given by

(iz J'&=fd v, va(v)
~mtn

x cosh
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(~E~~a) o:f ~x dVN P(N).
1VCFk & Nm(II

(14)

do not know of any stationary solution of the sys-
tem (2) and (2'). However the preceding results
have been derived using only the correlation be-
tween the amplitude and space scales of the sol-
itons. We may therefore extend these calcula-
tions to 3D where, strictly speaking, solitons
may not exist, but blobs having only the same
characteristic scales as solitons are present.
Thus we establish the following scale depen-
dences:

8 -E 'k '-E ' Wi.'=NB ~NE
(13)

ko~E ~ V.

This means that in a 3D problem the condition of
"close packing" determines N, „~W' 'L'. The
Fourier components of a blob of scale size ko is
therefore estimated to be Eg ~E k, /F(k/k, ),
where E(k/k, ) is approximated by a step function
with cutoff at k=k, . Finally the power spectrum
of the N-soliton state obtained following the pro-
cedure outlined earlier is

short-scale-length blobs can be estimated as

v it —onv —k, 'Nv, (k, ) -Nk, ' = const

from (13). Hence Eq. (15) gives P(N) =const again.
The estimates given above are valid only if

v, (ko) &c, . In the opposite case solitons can exist
only under the condition vs&c, &vs(ko) and their
dynamics is rather complicated because interac-
tion between solitons can be accompanied by the
radiation of sound. The basis for a "flat" dis-
tribution therefore needs further investigation.

Thus, under the conditions of strong correla-
tion (1), a new turbulent state consisting of a
random set of blobs can develop in which each
blob is composed of self-trapped Langmuir waves.
The interaction of blobs leads to the establish-
ment of a spectrum (E~') -k ' and a flux of ener-
gy takes place from the source region k-k„„„,»,
to the short-wavelength region k —

A, D
' where

wave energy is absorbed by the plasma. In the
region of strong Landau damping kA. D~ 1 we ob-
viously expect the spectrum to fall off much fast-
er than k '.

It is very interesting to note that the flat distri-
bution P(N) = const gives the same spectrum
(jEy[') o-k ' as for the 1D case.

We now offer some arguments in support of the
choice of P(N) used above in the limit koXn&(m/
M)'t'. In the 1D case the decay of one into two
solitons is impossible but the conservation of en-
ergy admits the coalescence of two solitons into
one. The characteristic time scale v, ~~

' for
such a process is roughly L/Nvs(ko) which gives
v tt M (W/nT) which is independent of N Hence.
a Liouville-type equation

BP/Bt = B[v,ttP(N)]/BN (1 5)

in steady state furnishes P(N) =const for the main
part of the spectrum if the energy source excites
the long scales.

On the contrary, in a 3D situation the genera-
tion of short scales is possible through the decay
of blobs. Such decay is induced by collisions be-
tween blobs. We do not take into consideration
the spontaneous decay processes as we have as-
sumed that blobs of this size are quasistable.
The effective frequency for the generation of
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