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A new generalized thermodynamic potential is presented which governs the stability,
the dynamics, and the fluctuations of a liquid fluid layer near the Benard point, even in
the nonlinear domain. By analogy, a large number of results obtained for other systems
are shown to be applicable to the Benard problem.

The Benard convection instability' of a plane
horizontal fluid layer heated from below has re-
ceived a great amount of interest for several rea-
sons. In the first place it is probably the sim-
plest nontrivial example of an instability in fluid
dynamics. By the same token, the appearance of
convection cells at the Benard point is also a very
clear-cut example of a "dissipative structure. '"
Such structures are well known to appear in many
systems if they are driven by some external force
into a nonlinear domain far from thermal equilib-
rium. The very abrupt appearance of dissipative
structures, like convection cells, at remarkably
well-defined values of those parameters which
characterize how far away the system is from
thermal equilibrium (the Rayleigh number R in
our case) has sometimes been compared to phase
transitions in equilibrium systems. This compar-
ison is even more intriguing, since the appear-
ance of a dissipative structure, like a phase tran-
sition, is accompanied by an obvious change of
the symmetry of the macroscopic state of the sys-
tem. However, so far the validity of such a com-
parison has not yet been checked. More specifi-
cally it has not yet been established whether the
order introduced at the Benard point by the ap-
pearance of convection cells is a long-range or-
der in the usual sense or rather an order of finite
range.

It has been difficult so far to decide this ques-
tion, because of the lack of a sufficiently general
thermodynamic potential which could describe
simultaneously the fluctuations, the dynamics,
and the stability near the Benard point in a simi-
lar way as the free energy does for thermal-
equilibrium systems. Attempts to construct such
a potential have been numerous. The most re-
markable and general approach up to now has
been made by Glansdorff and Prigogine. ' Howev-
er, the generalized thermodynamic potential they
constructed, the "excess entropy production" or
a generalization thereof, although being a very
useful and rather easily constructed quantity,
governs the dynamics and the stability only in the
linear vicinity of a stationary nonequilibrium
state, while a nonlinear analysis is necessary
near an instability. In the present note, I would
like to present a new generalized thermodynamic
potential for the Benard problem. '

Let us start from the hydrodynamic equations
of the liquid within the conventional Boussinesq
approximation' and add the random driving forces
due to thermodynamic fluctuations, "thereby as-
suming local thermodynamic equilibrium. As
has been shown, ' for R(R, the motionless heat-
conduction state is the only stable solution, while
for a certain range of R)R, that state becomes
unstable and two-dimensional rolls (i.e., inde-
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pendent of the y direction parallel to the fluid
layer) are stable within a certain range of wave
numbers. ' Hence, for the sake of brevity, the
discussion will be restricted to nearly two-di-
mensional flows.

Employing perturbation techniques described
by Newell and Whitehead, ' but keeping in addition
fluctuating force terms, a Fokker-Planck func-
tional equation is derived from the Boussinesq-
Langevin equations. It is satisfied by the prob-
ability density W for observing a certain complex
amplitude w(x, y) of the (vertical) z component
of the velocity field v, (x, y, z), '

v,(x, y, z) = [w(x, y ) exp(ik, x) + c.c.] sinn z.

For simplicity I have assumed free boundary
conditions (v, =0) on top and on the bottom of the
liquid layer, which leads to a critical Rayleigh
number R, = 27m'/4, and to a critical wave num-
ber k, =v/v 2. ' Furthermore, I have assumed
that the z dependence is completely fixed (be-
cause of the boundary conditions) and consider
only the lowest order vertical mode. In this der-
ivation of the Fokker-Planck equation I have to
assume in addition that the fluctuations of w(x, y,
f) are slowly va, rying functions of space and time
in the vicinity of the Benard point (over distances
and times of the order of I), and that a power-
series expansion of the velocity field in powers
of (R —R,)'" is possible. Both a.ssumptions are
consistent with the results obtained by making
them. The equation then takes the form

BW Gap

Bl I+P (z& Bw(x y) Bw~(x y) 5w(x y)
dx dy — — — + ~ W+ c.c.

with

Q=~'(0, + 0,)/(I+P).

Q, and q, are the intensities of the driving stochastic heat flux and momentum flux densities, respec-
tively, which in the units used here' are given by

Q, =gPKT2/5C&u2 b,T, q2 =KT/5v l.

y, in Eq. (2), is the following functional of w(x, y):

y = q 'ff dxdy[- —,'m'& lwl'+-'P'lw I'+4IBw/Bx —(i/v 2v)B'w/By'I']. (3)

Obviously, W- exp( —y) is a, time-independent
solution of Eq. (2)." Hence, Eq. (3) is the cen-
tral result. It combines the same amount of in-
formation on the dynamics, stability, and fluctua-
tions as the free energy does for equilibrium sys-
tems. From Eq. (2) one can immediately derive
the linear force flux relationship for the aver-
ages,

(W) = —[0/(I + P) ](&V/Bw*). (4)

Indeed, dropping the averages in Eq. (4) leads di-
rectly back to the hydrodynamic equations de-
rived in Ref. 8 for the present case. Therefore,
it becomes at least plausible that Eqs. (2) and (3)
hold within the same approximations, if in addi-
tion fluctuating force terms are taken into ac-
count. The details of my derivation will be pre-
sented elsewhere.

If x is governed by the hydrodynamic equation
associated to Eq. (4), y can only decrease in
time, since the coefficient in Eq. (4) is negative.
Hence, states which minimize y are stable and
occur with maximum probability. The state

which absolutely minimizes cp for R &R, is the
uniform state I w P =3v'e/P' which by Eq. (I) cor-
responds to a completely regular alignment of
two-dimensional rolls.

Other extrema of y are

w„=f,exp[i(k —k,)x],

lf, l
=[3".—8(k-k, ) ]/P.

Their value of y is larger than the y value of the
state k =k,. For k &k„k —k, )n Wc/2v 2, these
states are in any case unstable with respect to
oblique modes and sideband generation in x di-
rection, respectively, "as can be shown by an
analysis of y in the vicinity of these states. How-
ever, even in the stability region 0 (k —k, &v~e/
2V 2 these states are subject to a decay towards
the (most probable) state k =k, . In such a decay
process, the velocity field has to fluctuate from
the local minimum of rp, given by w„(x), across
a barrier of larger y to the next smaller k value
allowed by the boundary conditions. The most
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probable path in phase space the system can
chose for this fluctuation is via a saddle point of
cp~ agalll glvell by t1+/5w + = 0. In fact, this pl ob-
lem has already been considered and solved ex-
plicitly" in connection with current fluctuations
in one-dimensional superconductors. The entire
formal analysis may immediately be taken over.
Among the results which become available are
analytic expressions for the local perturbations
at the saddle points of y and formulas giving the
height of the 91 barrier. For the sake of brevity
I give these results only in the limit k -k„where
the saddle point of cp is given by

lto I' = (»'e/P')(tanh[x(311'e) '/4] j'
and has the height

b, cp = 8~3''L p'"/QP'.

L, is the total cell length in the y direction. For
most liquids Q, + Q, is very small and one would
have to choose R extremely close to R, in order
to observe the jumps across the barrier of cp for
R &R, (i.e., the sudden disappearance of one roll
in the roll pattern). Hence, rolls within the sta-
bility region k &k, will have a very long relaxa-
tlon time.

Next, we consider the correlation length in the
ordered state of the layer. Equation (3), inter-
preted as a free energy, allows immediately the
statement that true long-range order cannot be
present for 8 &8,. Spatial fluctuations in the y di-
rection enter y only by the second-order deriva-
tive, and are hence very easily excited at long
wavelengths. The first-order derivative in the x
direction, entering Eq. (3), is also not sufficient
to ensure long-range order, since it still allows
for a free spatial diffusion (rather than oscilla-
tion) of the phase of the complex velocity field
with a finite correlation length. By Eq. (1), this
is synonymous with a, finite correlation length of
the relative position of the rolls and is thus not
reconcilable with long- range order. These gen-
eral arguments will apply also to other conceiv-
able cell forms. While long-range order is there-
by ruled out in principle, the question of how

long the range really is has still to be answered
separately. This is easy for rolls which are ho-
mogeneous in the y direction (s/By=0). In that
case, Eq. (3) reduces to the well-known free-
energy expression of one-dimensional Ginzburg-
I andau fields, which have recently been analyzed
in great detail. " Among the results which are
readily available from these numerical studies

are the correlation lengths $, and g, of the field
amplitude zv and its absolute square, respective-
ly, as well as the expectation va.lue (iso i'), all
as a function of e =(R —R,)/R, . The results show
a smooth transition region around e =0 of width
&e =(P'Q/L, )' '/3m'. $, and $, both have the same
order of magnitude, 4(L,/P'Q)"', in that region.
$, has a maximum of about half that value for e
= Le and is $, = (2/3m'ill)'" outside the transition
region. $, increases rapidly through the transi-
tion and remains large for R &R,. I want to point
out that the transition region I obtain is extreme-
ly narrow for realistic fluids [Lc=3x10 '(I,/
l) '" for water at T = 20 C] and that the correla-
tion lengths are extremely long in that region
[$, ,= 1 x10'(L,P)'", for the same example] so
that the transition can be considered to be sharp
in very good approximation.

The counterparts in the time domain of the two
correlation lengths are the two correlation times
7, and 7, of se and Iso (', respectively, which show
a very similar behavior. They can be estimated
by neglecting the spatial derivative terms in y
(upon the assumption that the coherence lengths
are much larger than the sample lengths) and
solving the dynamical problem posed by Eq. (2).
Again, this has already been accomplished be-
fore, this time in laser theory. " The two corre-
lation times within the transition region [now hav-
ing the width b, e = (Q/E)'~'P/3''] have the order
of magnitude (F/Q)'"2(1+P)/P; 7, has a maxi-
mum of about -', that value for e = 26m and is v,
= (1+P)/3w'ie( outside the transition region, indi-
cating a slowing down of entropy or energy fluctu-
ations with k =k, in the transition region. 7, is
about (E/Q)'I'(1+P)/P for R =R;, it increases
monotonically through the transition and is z,
=6w'(1+P)eF/P'Q for R &R, outside the transi-
tion region. Again the numbers for realistic flu-
ids show the transition to be sharp from an ex-
perimental point of view.

~Cf. , e.g. , S. Chandrasekhar, Hydrodynamic and Ily-
dhomagnetic Stability (Clarendon Press, Oxford, Eng-
land, 1961).
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Strong Langmuir turbulence is described in terms of a random set of blobs of self-
trapped plasma waves. The interaction of these blobs leads to the generation of power
spectra (lE& ~2) ~ k 2 that agree with the results of one-dimensional computer simulation.

The strongly turbulent regime is of great im-
portance in the heating of plasma by high-current
relativistic electron beams or by powerful la-
sers. Indeed, in both cases an important process
by which the energy of the beam or the trans-
verse electromagnetic wave is converted to plas-
ma energy is via Langmuir oscillations. If the
input power and pulse duration are large enough
the energy density of oscillations may become
very high. The applicability of weak-turbulence
theory is restricted by the condition

W/nT & (kXn)',

where 8" is the energy density of the oscillations,
nT is the thermal energy density, k is the typical
wave number of the oscillations, and A, D is the
Debye length. If this condition is not satisfied,
the characteristic rates of nonlinear interactions
5u-~~(W/nT) become greater than the frequency

spread due to thermal effects 5&@~-u~(kh. n)2; m~
= (4nne'/m)"' is the electron plasma frequency.
It has been shown' that the Langmuir spectrum
is unstable with respect to low-frequency density
perturbations when W/nT & (4kXn)', where &k is
the width in the k spectrum. For the case bk/k
«1, this instability is identified with the decay
instability or at higher amplitudes with the oscil-
lating two-stream instability. In the opposite
limit 4k-k, when the resonant conditions cannot
be satisfied for the entire set of k in the spec-
trum, only the modulational instability of Ref. 1
can exist. Thus even when W/nT «I, strongly
correlated states may be a feature of Langmuir
turbulence. There exist, then, the problems of
the dynamics of such a turbulent state, of the dis-
sipation of wave energy, of beam-plasma and
laser-plasma interactions in this regime, etc.

Processes of this kind were investigated in
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