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The Wilson-Fisher e expansion is used to calculate critical exponents in a semi-in-
finite Ising model to first order in ~. It is found that potentials renormalize just as in
the bulk, and all surface information is contained in the wave-function renormalization.
v is ~ +~& and p is 0, just as in infinite systems. p& and p~~ are, respectively, 1—~&
and 2 —~& and the surface gap exponent && is ~~ —~~& if scaling is assumed.

The Wilson renormalization procedure has been highly successful in calculating critical exponents
in bulk or infinite systems. ' ' In this paper we will outline a calculation of critical exponents in a
semi-infinite Ising system using the & expansion. ' Particular emphasis will be placed on the calcula-
tion of the exponents q~~ and g& introduced by Binder and Hohenberg' and the gap exponent 4, introduced
by Fisher. The major purpose of this paper to to present results. Calculational details will appear
in a subsequent publication.

We start with the standard S' Hamiltonian

X = —,'O'Z S'(x) ——,'KQS(x)S(x+5)+u+S'(x), (I)

where x= (x~,x„.. . , x, , ) == (x~, x,~) labels the sites on a semi-infinite cubic lattice and 5 is the nearest-
neighbor position. x~~ is the (d —1)-dimensional vector parallel to the surface, and x~ the component
of x perpendicular to the surface. x~ takes on values 1, 2, 3, . . . . All other components take on all pos-
itive and negative values. It is convenient to extend the sums in Eq. (1) to include the plane x~=0 and
to require that S(0, x~~) be zero Then S.(x) can be expressed as a Fourier sine integral

d

S(x) = ', , v(p) exp(ip~~ ~ x~~)W2sinp~x~,
2 7T

where p =- (P~, p~~). [The v 2 appearing in Eq. (2) puts P~ and p~~ on an equal footing in the Hamiltonian
below. ] Following Wilson, we introduce a modified Hamiltonian in which p is restricted to a unit cyl-
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index D of radius 1 in the parallel direction and height 2 in the perpendicular direction:

d&p
X = — , (r +p')v(p)v( —vp) +u '

' , ' „,' ' 0'(p, )cr(p, )a'(p, )cr(p, ) 5"(p„p„p„p, ),
7T (21T)

where vp=( —p~, p~, ),

(Pl 1 P2 s P31 P4) (Pill+ P2 II+ P311 P411 ) (Pl I s P2I t P3 J yP4 J )r

(3)

(4)

4
6(p, ~,p, ~,ps~, p«) =—Q sinp»x~sinp»x~sinp~~x~sinp«x~. (6)

7T + pp

The renormalization procedure on the Hamiltonian (3) is essentially the same as for infinite systems.
Let D, be the cylinder of radius b ' in the d —1 parallel directions and of height 2b ' in the perpendic-
ular direction, and let D, =D —D, . Taking the trace over all o(p) with pCD„we obtain a new Hamil-
tonian, X, which is a function only of v(p)—= v(p) for peD, . K is given to second order inu by

{P)]=2 ~ 2, [p'+ +12 C, {r)] (p) {- P)-2
~

--2 ' —
2

'- (p, p) {P,) (p

+ [u —36u'C, (r)] ' ' 2',„' o(p, )o(p, )0(p, )~(p, ) &'(p„p„p„p,)
27r 3"

+ ~ V4 Pl P2&PS&P4 0 Pl 0 P2 + P3 0 P4

where all explicit integrations are over D„

v(p, p') =6u 5 '(p~, +p,() i d"p, —,—[5(p~+p~'+2p, ~) —5(p~ —p~'+2p, ~)],
gg) pa + 'r

(8)
, (2w)' p'+r ' '

g (2~)' (p'+r)' '

u(p„p, ) is a nonlocal two-spin potential, and v, contains all four-spin interactions except for the p=0
local part.

We now perform a series of three transformations on X and 0 to produce a new Hamiltonian X' and
a new spin variable o' such that X'(o') looks as much as possible like the original Hamiltonian. The
first transformation eliminates the nonlocal two-spin interaction from X. Let o(p) = o'(p) + 5v(p). If
5v(p) satisfies

(9)

o'(& 'P) = «'(P).
To order &, P is b' ' which is the same as for an infinite system. The final transformed Hamilto-
nian has the same form as Eq. (3) with new potentials

6o(p) =
2

—;—,2,.~(p, p')o(- uP'),
( ~)

1

then k[o (p)] contains no nonlocal two-spin interaction to first order in u. The second transformation
takes p to hp so that integrations are over B rather than D, . Finally, the third transformation renor-
malizes v' so that the coefficient of the P' term is one half:

r' = b'[r + 12uC, (r)],
u' = b'[u —36u'C, (r)],

(11a)

(11b)

where e =4 —d. These are the same as the bulk renormalization equations. ' Equation (11) yields a
fixed-point value of u to first order in e of u*= (2w'/9)e and a coherence-length exponent v equal to 2

+» e which is the same as in infinite systems. Hence, there is a single divergent correlation length
in a semi-infinite system which diverges in the same way as in an infinite system. This is consistent
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with previous assertions. +" " The nonlocal four-spin potential v4 can be shown to be irrelevant' to
first order in &.

We have just seen that potentials in a semi-infinite system renormalize in exactly the same way as
potentials in a bulk system, at least to first order in e. All information about the surface is lumped
into the wave-function renormalization. In bulk systems, wave-function renormalization is character-
ized completely by a single number P. In the semi-infinite system, P becomes an operator &(pp ) re-
sulting from transformations one and three, given by

f (p, p') = ft (2~)" ~(p —p')+ (I/2P')~(- ~p, p')).

At the fixed point, the correlation function F*(pp') =(v(p)a(p')) satisfies

(12)

where the star indicates the fixed-point values of f(pp') and F(pp'). The solution to Eq. (13) for d =4
—& to first order in & is

F"(pp') = Fo*(pp') +, (2~)" ' ~' '(p, p ')y'*(p, p'), (14)

where p = (p~'+pq')' ', I'o*(pp') is the Gaussian fixed-point function

Fo*(pp') = (6(p+p') —~(p+ p')),(2w) 1

and

r*(pp')=4 .~*, (P~+Pi')tan ', —(P&-p&') tan '
J.

It should be stressed that the factors of 2 appearing in tan ' in Eq. (16) result from reflections off of
the surface and are unrelated to any cutoff. Fourier transformation of Eq. (14) yields the spatial cor-
relation function

F*(X,x') = I",*(x,x') + I', *(x,x'),

where I",* is the Gaussian half-space propagator,

I'(-, d —1) 1 1
4w"' [»- '[' ' [x —ux'I")'

F,(x, x ) = 3 {J+(x~—x~ +lp, x~ ) —J (xg+xg +sp, xg )+J+(x~ —x~+zp, x~)8~'p
—J (x~+x~'+ip, xJ) —J, (x~+x~'+sp, 0)+J (x~x~'+sp, 0)),

where p = I X~~
—x~~' I and

1 XJ +XJ
(x~+x~ ) ~x —x [

J, (g, x~) =Ref dy f (dp~/2m)[exp(ip~g) exp( —yx~)/(y+ 2iP~)]. (20)

As both x~ and x~' go into the bulk, i.e. , x~, x~'- ~ with x~ —x~' finite, Fo*(xx') becomes the bulk the fixed point. This corroborates results ob-
Gaussian (or mean field) propagator '' (1/4n') Ix tained by high-temperature expansions. '
—x' I ", and I,* dies off as Two other limits are of interest. In the first,

x' is fixed on the surface and x goes to infinity in
the bulk at an angle 8 to the normal to the surface.
In this case, I'* behaves like

Hence, the fixed-point correlation function in the
bulk becomes the same as for infinite systems
with g = 0 to first order in &. Note, however, that
the effect of the surface dies off very slowly at

I'*(x, x') -A(8)/~x —x'~' ""-L. (21)

By comparing I x —x' I
' ln t x —x' t terms in Eqs.

1471



VOLUME 3 1, NUMBER 24 PHYSICAL REVIEW LETTERS 10 DECEMBER 1973

(19) and (21), we obtain

gJ = (1 ——', e). (22)

In the Gaussian limit, A(g) is n' 'cos9. Correc-
tions to A(8) to order e can be obtained from
Ix —x'I ' terms in Eq. (21). They will be pre-
sented in a more detailed subsequent publication.
In the second limit of interest, both x and x' are
on the surface and

r+(x, x ) -a/p'-""~~. (25)

Again comparing p 'lnp terms in Eqs. (19) and

(23), we obtain

rtit = (2 —3e). (24)

These are to be compared with the mean-field
and spherical-model values of g~~

——2 and g&
——1.'

They are consistent with the numerical calcula-
tions of Binder and Hohenberg' on the three-di-
mensional Ising model in which gt~ and g& are
less than their mean-field values.

Using the scaling relation derived by Binder
and Hohenberg, we can calculate the exponent y,
governing the variation of the surface magnetiza-
tion m, with bulk magnetic field h, }t,= Om, /Oh

-t &&, where t = IT —T,I:
'y, = v(2 —Tj~) = —,'+ —,

' e . (25)

y, =b, , + v —p.

Comparing Eqs. (25) and (27), we obtain

6 = ———e1 1
2 12

(27)

(28)

Extrapolation of this result to & =1 gives ~,
= 0.416. Binder and Hohenberg ' estimate y, for
the three-dimensional Ising model to be about -',

from high-temperature expansions. This gives
0.5 in disagreement with our result evaluat-

y, can also be calculated from a scaling form for
the surface free energy'9''o

F"(t, h. , h, )=iti' " q" ( h, t/'i, ht/'),

where h, is the surface magnetic field, +" =o. + v

is the surface specific-heat exponent, and 4 =P
+z = p& and 6, are, respectively, the bulk and
surface gap exponents. We have

}t,= O'F/Oh, Oh Itl

where

ed at a=1. Clearly, near d=3, &' terms are im-
portant. At the moment, it is difficult to esti-
mate the magnitude of these higher order terms
within the context of the & expansion. If we ter-
minate the & expansion for g~ at &' and write g~
=1- -', a+cd' and equate this to 0.64 for e =1, we
find c- —0.2. A coefficient of &' of this size is
perfectly reasonable within the & expansion.
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