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Three-Body Forces in the Lattice Dynamics of Beryllium
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We present a first-principles calculation of the lattice dynamics of Be. The dynamical
matrix is set up by evaluating the total electron energy up to third order in the electron-ion
pseudopotential. In this way we are able to describe the three-body forces, which are essen-
tial for reproducing the experimental data.

Recent experimental measurements' of phonon frequencies of Be have shown that a description of the
lattice dynamics in terms of pairwise central forces between ions does not hold for this metal. This
fact can be proved by looking at the experimental results at the point Z =—(2&/a)(0, —', , 0) of the Brillouin
zone. At this point a group-theoretical analysis gives the following expressions for the phonon fre-
quencies with eigenvectors polarized in the basal plane in terms of the elements of the dynamical
matrix:

~~ ' = D„„(q, 11) +ImD„, (q, 11)—2 ReD„„(q, 12),

(u, '= D„„(q, 11) + ImD„, (q, 11)+ 2 ReD„„(q, 12),
' = D„„(q, 11) —ImD„, (q, 11).

If only central two-body forces are assumed to exist in the crystal, ImD„, (q, 11)= 0, so that ~„,'
=-,'(~~, '++~,'), i.e., the nondegenerate frequencies are equidistant from the degenerate one. For Be
the experimental sequence of frequencies is ~~, a„,»~~, , showing the necessity of including many-
ion forces to explain its lattice dynamics. Moreover, the distances between the experimental values
indicate that the contribution of the unpaired forces is particularly strong. From this fact Roy eI, al.
conclude that simple pseudopotential theory, which consists in setting up the dynamical matrix by
evaluating the total electron energy up to second order in the pseudopotential, is not adequate for
this metal, since it describes the lattice dynamics through an interaction between the ions, which
is a sum of two-body contributions. '

Previous theoretical calculations support this conclusion' '. Both with Heine-Abarenkov' and Shaw'
model potentials and with the orthogonalized-plane-wave form factors' the agreement between theo-
retical results and experimental data is poor.

The aim of this Letter is to show that pseudopotential theory, when extended to include the third-
order terms in the total electron energy, can account for the unpaired forces in the lattice dynamics
of Be and leads to good agreement with experiment. I'or this purpose we write the dynamical matrix
as

D s(q, ss') = 4 „s(q, ss') —5„g, i 4 „~(0,ss"),

where 4„s(q, ss') ,is the sum of three contributions:

4 „s(q, ss') = 4„s (q, ss') +4 „~~'~(q, ss') + 4 8~'~(q, ss');

here 4 8 (q, ss') arises from the direct Coulombic ion-ion interaction, 4„~~'~(q, ss') comes from the
indirect interaction between the ions as obtained by evaluating the total electron energy to second or-
der, while 4 si'~(q, ss') is due to third-order contributions. The last two terms in Eq. (3) can be eas-
ily expressed in terms of a local electron-ion pseudopotential v(q) by"

4„s"'(q, ss') = —Q(q+G)„(q+6) g
", — — -

—, —1 exp(iG R,) exp(-iG R, ),M vc(q+ ~ c(q+ G

(,), n -. —, v(q+ G) v(q+ G') v(G —G')
4„8 '(q, ss') = —g Q (q+ G) „(q+G') q
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where G and G' are reciprocal-lattice vectors, 0 is the cell volume, M is the mass of the ion, vc(q)
= (8&/q ) [l —f(q)j is the Coulomb potential modified by exchange and correlation corrections, e(q) is
the free-electron dielectric function including exchange and correlation corrections, and R, gives the
position of the atom in the unit cell and may be equal to (0, 0, 0) or v =—(v3a/6, 2a, 2c). The function
gq+6, q+G', G —G') is the perturbation expansion coefficient and has been given explicitly by Lloyd
and Sholl. '0

Formulas (4) and (5) are given for a local pseudopotential. However, it is known that the pseudopo-
tential of Be is rather nonlocal. A full nonlocal calculation of the third-order terms is not feasible at
present, so that one is forced to evaluate 4 8~'~(q, ss') with some local approximation. As shown in

Ref. 9, a very accurate approximation is to use the local form factor v(q), which reproduces the

screening charge density of the valence electrons to first order in the nonlocal pseudopotential, i.e. ,

v(q) = {k+q I v ik), l
~ ~ —&F 0 —(k+q) i & —&F A —(k+q)

where the (k+q lv~k) are matrix elements of the
full nonlocal and energy-dependent pseudopoten-
tial, and kF is the Fermi momentum.

An essential feature of this approximation is
to give a rather smooth form factor, which os-
cillates considerably less than in the usual "on
Fermi-sphere approximation" at large q. More-
over, a second-order calculation of the phonon
frequencies using v(q) reproduces with great ac-
curacy the results of the full nonlocal second-
order calculation. As we have shown in great
detail in Ref. 9, the use of v(q) to evaluate the
third-order contribution in simple metals al-
lows one to overcome the difficulties which arise
in going beyond second order with the usual local
form factor. In this way we can account for the

nonlocality of the pseudopotential of Be.
To perform the calculation we used the Heine-

Abarenkov model potential with the parameters
A. , given by Animalu" s tables. " The exchange
and correlation corrections were taken accord-
ing to Singwi et al."

The results of the calculation along T and T'
directions are displayed in Fig. 1 for branches
with eigenvectors polarized in the basal plane
and in Fig. 2 for the transverse perpendicular
branches. In the same figures are also present-
ed the results of second-order calculations.

The most relevant conclusion which can be
drawn from a comparison between the two cal-
culations is that the inclusion of three-body forc-
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FIG. 1. Calculated phonon frequencies for Be along ~A~ for modes polarized in the basal plane: (a) third-order
calculations; (b) second-order calculations. Experimental points are diamonds, Schmunk, Bef. 14; solid circles,
T

&
frequencies from Boy et al ., Bef. 1; open circles, T& frequencies from Boy et al. , Bef. 1.
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FIG. 2. Calculated phonon frequencies for Be along I'KM for modes polarized perpendicular to the basal plane:
(a) third-order calculations; (b) second-order calculations. Experimental points are from Boy et al. , Hef, ]..

es via third-order perturbation theory explains
the essential features of the phonon spectrum of
Be. It is seen both from Fig. 1 and from Fig. 2

that the theoretical values are considerably low-
ered with respect to the second-order theory,
leading to a phonon spectrum which compares
much more favorably with the experiments. In
particular good agreement is obtained for the
frequencies ~(I', ') and u(1', '), for the trans-
verse perpendicular branches T, and T„where
the third-order terms modify the second-order
results by about 30%, as well as for T, and T,
optical branches, whose crossing is shifted by
the unpaired forces toward I', as indicated by
the experimental data.

However, the most significant effect of the
inclusion of the third-order contributions ap-
pears at the K point. Here the three-body forces
lower considerably ~E which falls below the
nondegenerate frequency ~„. In this way instead
of having a degeneracy in K between the T, acous-
tical and the T4 optical branches, we get, in
agreement with experiment, the degeneracy be-
tween the T, and T4 acoustic branches. As shown
in Eq. (1) such a behavior of the frequencies at
the K point is possible only if ImD„, (q, 11)& 2 I Re
D„„(q,12)i and so it is entirely due to third-order
terms. In our calculation we obtain ImD„, (q, 11)
= 2167 x 10"(rad/sec)' and ReD„„(q, 12) = D„, (q,
12) +D„„'(q, 12) +D„„'(q, 12) = (- 7659+ 6442
+590) x 10" (rad/sec)', where D„, is the Cou-

lombic contribution and D„„'~ and D„„' are the
electronic terms. It is seen that the effect of the
inclusion of the third order in the evaluation of
the total energy is twofold: It makes ImD„„(q, 11)
greater than zero and decreases the value of
ReD„„(q, 12).

It should be noted that this behavior is typical
of beryllium. For other hexagonal metals, such
as Mg and Zn, our preliminary calculations"
show that a~ is considerably lowered by three-

5

body forces and goes to a value rather close to

~~,, but there is not the large inversion between
the two frequencies found in Be.

The importance of the third order in beryllium
can be imputed to the strength of the electron-
ion pseudopotential. Because of the absence of

p states in the core there is no cancelation for
the p part of the ionic potential, as ca.n be seen
from the high value of the parameter A, of the
model potential" as well as from its strong en-
ergy dependence. For Mg, whose A. , is lower
and weakly energy dependent, the effects of
third order are not so important.

In conclusion we want to emphasize that the
pseudopotential theory, carried out to third or-
der in the evaluation of the total electron ener-
gy, explains the lattice dynamics of Be. More-
over, theoretical results in good quantitative
agreement with the experimental data can be ob-
tained without the introduction of any adjustable
parameter.
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The Wilson-Fisher e expansion is used to calculate critical exponents in a semi-in-
finite Ising model to first order in ~. It is found that potentials renormalize just as in
the bulk, and all surface information is contained in the wave-function renormalization.
v is ~ +~& and p is 0, just as in infinite systems. p& and p~~ are, respectively, 1—~&
and 2 —~& and the surface gap exponent && is ~~ —~~& if scaling is assumed.

The Wilson renormalization procedure has been highly successful in calculating critical exponents
in bulk or infinite systems. ' ' In this paper we will outline a calculation of critical exponents in a
semi-infinite Ising system using the & expansion. ' Particular emphasis will be placed on the calcula-
tion of the exponents q~~ and g& introduced by Binder and Hohenberg' and the gap exponent 4, introduced
by Fisher. The major purpose of this paper to to present results. Calculational details will appear
in a subsequent publication.

We start with the standard S' Hamiltonian

X = —,'O'Z S'(x) ——,'KQS(x)S(x+5)+u+S'(x), (I)

where x= (x~,x„.. . , x, , ) == (x~, x,~) labels the sites on a semi-infinite cubic lattice and 5 is the nearest-
neighbor position. x~~ is the (d —1)-dimensional vector parallel to the surface, and x~ the component
of x perpendicular to the surface. x~ takes on values 1, 2, 3, . . . . All other components take on all pos-
itive and negative values. It is convenient to extend the sums in Eq. (1) to include the plane x~=0 and
to require that S(0, x~~) be zero Then S.(x) can be expressed as a Fourier sine integral

d

S(x) = ', , v(p) exp(ip~~ ~ x~~)W2sinp~x~,
2 7T

where p =- (P~, p~~). [The v 2 appearing in Eq. (2) puts P~ and p~~ on an equal footing in the Hamiltonian
below. ] Following Wilson, we introduce a modified Hamiltonian in which p is restricted to a unit cyl-


