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It is shown that the ideas of effective-medium theory can be applied to the evaluation of
the ac behavior of a random system. The results for systems of which the components
have no dispersioo. , show dispersion. In particular, it is found that the u behavior of
the ac conductivity of many disordered systems is reproduced to a good approximation
over a limited frequency range.

The method of approach of substituting an ef-
fective medium for the real medium in the treat-
ment of transport problems in inhomogeneous
media has been emphasized by several authors, ' '
most recently by Cohen and Jortner. ' Here we
shall be not so much concerned with relating
the model macroscopically inhomogeneous med-
ium to its underlying microscopic structure, as
with discussing the ac behavior of the model.
The motivation for this comes from experiments
which closely resemble the model, "and the fact
that these experiments yieM results which close-
ly parallel those in systems such as amorphous
semiconductor s, transition- metal glasses, and
chalcogenide glasses.

When using some measurement system to de-
termine the real and imaginary parts of the con-
ductivity (or alternatively the dielectric con-
stant), one experimentally defines the real part

o,„and imaginary part e such that

~ *((u) = ~„((u) +is)e, e„((u),
(~)c„*(u))= e„((u) —i (r ((u)/e, w.

Since these quantities are experimentally de-
fined, there must exist an experimentally de-
fined avera. ge field E *(u) within the sample.
The problem is to relate the average or mea-
sured values of (1) to the values of v and e of
the components of the medium. We choose a
medium consisting of two components, one with
complex dielectric constant e,~ and concentra-
tion C, the other being defined by e,* and 1 —C.
We insist that the frequency of the applied field
be such that this field is the same at all points
in space at any instant of time. For sample
thicknesses —1 p, m, this limits the present mod-
el to frequencies of about 30 0Hz, that is, with-
in the frequency range of standard bridge, stand-
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ing-wave, or time-domain ref lectometry tech-
niques.

We start from a single-component medium,
the effective medium, characterized by e *, and

replace it piecewise with the original system
using spherical volumes. Initially, the field at
infinity and within a small spherical volume in-
side the sample is E *. When the volume is re-
placed by original material, the new field within
the spherical volume is given by

(2)

(4)

E 1 E'2
+ ——(ta,no, )

2 ci

1 cr, eaa= ——'+ +-—' (tan0, )-',
0~ Eco'~ 4 6

a = (3C —l)a, + —,'(2 —3C)a„a= o or e,

tan6, = o,/&occam, .

(7)

&g*+ ~m*

When all replacements are effected and we are
back to the original medium, the average dif-
ference between E,.* and E * must be zero, i.e. ,
we must have

(z.*-z *)=o. (3

Carrying out the averaging process explicit in

(3) (which is not strictly limited to a binary dis-
tribution such as we have chosen) yields the fol-
lowing set of equations for o (co) and e (~):

(o /o, —v/v, )'= (4'+8') ~'+A,

(e /e, —e/e, )'= [(A.'+8') ~' Aj tan'-6„

where

0- 2

The system of Eqs. (4) —(8) describes the fre-
quency dependence of the effective conductivity
and dielectric constant. They can be shown to
reduce to the familiar expression' ' for the ef-
fective dc conductivity 0, for c, =e, =O, and an
exactly parallel result for e, in the case that
o, = 0, =0. This last resu". t is of interest because
many studies have been made of liquid mixtures.
Such a situation is not easy to make comparisons
with because of the strong dependence of e on
density. The most obvious area of applicability
is this context is that of the critical point of bi-
nary liquid mixtures, where one has a theoreti-
cal prescription for the concentration fluctua-
tions.

Figure 1 displays the variation of o /o, and

e„/e, versus C at two low frequencies. The
conditions correspond roughly with some exper-
iments performed by Bueche, ' and the curves
give a reasonable explanation of those results.
The striking effect occurs in Fig. 2, where v (co)/

o, and e (cu)/e, are plotted versus frequency.
Over the frequency range covered by an audio-
frequency bridge, and a bit beyond (where mea-
surements are most plentiful), we see a depend-
ence of the type' v„(co) cc co'. Such a dependence
is common in the materials mentioned in the be-
ginning over this frequency range. Hauser' re-
cently found a similar dependence in sputtered
metal-metal-oxide films, which he quoted as
evidence for a hopping mechanism.

It would seem that if the materials mentioned
possess a microscopic aggregatelike structure,
whether it be a physical clumping or complicated
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FIG. 1. Variation of om/o& (solid lines) and eQe
(dashed lines) with C at 10 and 10 Hz, for the condi-
tions e2=10, et ——0, o&/o&

——10, and o&
——10 mho cm-3 -5 -i
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FIG. 2. Variation of om/o~ and e /e2 for the same
conditions as in Fig. 1, but for C =3 (solid curves).
Over the straight parts of the curves 0~/0& ~co

/&q~~ . The dashed curve is for o /o& with

o~/o~ ——10 ~. The slope gives om/o& cc uo' 49.
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network of variable complex conductances such
as envisioned in percolation theory, this alone
could produce the sublinear frequency dependence
of the ac conductivity. Previous attempts at an-
alyzing this sort of situation have been confined
to low concentrations and have been reviewed by
Van Beck." The results displayed in Fig. 2 are
for components which individually are nondisper-
sive. The present development, as given by Eqs.
(4)-(8), is not confined to low concentrations,
and also includes the case in which the individual
components may be dispersive. The results in
this latter case are not too dissimilar to those
shown in Fig. 2. That is, it is easy to find cases
in which an apparent o o= ~', with s &1, behavior
occurs over a significant frequency range. Ex-
perimental results are often presented with the
dc conductivity o, subtracted out. This process,
because of experimental uncertainties, often ob-
scures the very low-frequency behavior, which
in the present case is proportional to ~'. Sim-
ilarly, the ~' behavior is often observed to hold
to the highest frequency used experimentally.
If, in fact, such behavior holds for all frequen-
cies, one finds from the Kramers-Kronig rela-
tions that o/e ~~. Over the range of frequencies
where the ~' behavior occurs in the present
case, this relationship is not obeyed because the
behavior is not true for all frequencies. Thus it
would seem that from an experimental point of
view both components of the complex conductivity
need to be measured over a very large frequency
range in order to understand better the amor-
phous or random systems discussed to date.

Commonly, varying the temperature of the
system is somewhat equivalent to varying the
measurement frequency because of the fact that
relaxation times are usually activated. In the
present context, temperature variation could be
expected to have the effect of changing the value
of o,/v, . The effect of such a change is illustrat-
ed in Fig. 2. The shift in the value of s is much
more dramatic if the dc conductivity is subtract-
ed out. If both o, and o, are activated, with 0,

more strongly so than 0„0,/'0, decreases as the
temperature decreases, with a concomitant in-
crease in the value of the index s. This behav-
ior also is typical of that observed in several
glassy systems.

To conclude, it has been shown that for a bi-
nary mixture of two materials which each have
both a constant dielectric constant and a dc con-
ductivity, the ac behavior exhibits dispersion,
as shown in Fig. I, and also displays a power-
law dependence on frequency, with an exponent
less than 1, over a considerable frequency range.
The expressions developed for the real and imag-
inary parts of the complex conductivity are equal-
ly applicable to a binary mixture whose individu-
al components exhibit dispersion. The present
results indicate once again the extreme impor-
tance of determining the structural character-
istics of an amorphous material at the same time
as other measurements are made.
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