VoLuME 31, NUMBER 24

PHYSICAL REVIEW LETTERS

10 DECEMBER 1973

[Sov. Phys. JETP 32, 493 (1971)l,

R. A. Ferrell and D, J. Scalapino, Phys. Rev. Lett,
29, 413 (1972).

‘K. G. Wilson, Phys. Rev. Lett, 28, 548 (1972),

5S.~K. Ma, Phys. Rev, A 1, 2172 (1973).

6o satisfy (1) a=0 for d=2, (2) =% forn=1, d=2
(Ising model), we set

€ (n+2)

T](ﬂ,é):— [

1—€/2+ 1.1389617(11)]

2 (n+8)21—¢€/4+0.1389€p(n)

where p(n)=6(3n+14)/(n +8)2,

"For n=0.25, ¢ rises slowly for v>4 as may be seen
from sample values: ¢=0.705 (v=4), ¢=0.825 (v=10),
®=0.875 (v=20).

8As v becomes large (but finite) the temperature re-
gion over which two-dimensional critical behavior is
expected will shrink; cf, M, E. Fisher, in Proceedings

of the Conference on Thin Film Phenomena, San Jose,
California, 15—16 March 1973 (to be published).

D. J. Scalapino, R. A, Ferrell, and A, J. Bray, Phys,
Rev. Lett. 31, 292 (1973).

M, E, Fisher and A. E, Ferdinand, Phys. Rev. Lett.
19, 169 (1967); see also Ref. 8 and papers cited there-
in,

HR. F, Hassing and J. W. Wilkins, Phys. Rev. B 7,
1890 (1973).

2y, L. Ginzburg, Fiz. Tverd. Tela 2, 2031 (1960)
[Sov. Phys. Solid State 2, 1824 (1961)].

8D, J. Thouless, Ann. Phys. (New York) 10, 553
(1960).

“Hassing and Wilkins (Ref. 11) do not introduce the
form (5) for the fluctuation propagator in the critical
region, and therefore do not predict a thermodynamic
phase transition for T >0 in 2D films,

Drift Waves in Turbulent Plasmas
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The influence of a turbulent spectrum of high-frequency, short-wavelength electron plas-
ma waves on the linear dispersion relation for low-frequency, long-wavelength drift waves

has been analytically investigated.

The presence of high-frequency, short-wave-
length microturbulence in a plasma can modify
the dispersion relation for low-frequency waves
in two different ways: (a) indirectly, by produc-
ing “anomalous” transport coefficients, and
(b) directly, by mode-coupling effects. In this
Letter we investigate an example of the latter
interaction.

In a way this interaction is similar to para-
metric excitation or suppression of low-frequen-
cy waves by high-frequency fields.? Two impor-
tant differences exist, however. First, in para-
metric processes one usually considers the ef-
fect of one coherent high-frequency wave on low-
frequency dispersion relations; here, on the oth-
er hand, we consider the more general problem
of the effect of a spectrum of a large number of
waves with random phases. Second, in usual
parametric calculations, one considers the exci-
tation/suppression of wavelengths shorter than
those of the applied field, whereas in the present
calculation we investigate the modification of low-
frequency waves with wavelengths longer than
that of the background turbulence.

Vedenov et al.? have developed a general meth-

od for studying the interaction of low-frequency
long waves with high-frequency, short-wave-
length turbulence. Basically, the method is an
“adiabatic” method in which one treats the high-
frequency microturbulence as wave packets with
a distribution in %2 space that satisfies the wave-
kinetic equation. One then studies the motion of
these wave packets in a medium varying “slowly”
in space and time—the variation being due to the
low-frequency, long-wavelength wave. The re-
verse influence of the high-frequency turbulence
on low-frequency waves comes through the aver-
age electric-field pressure of VE? type which
modifies the electron dynamics.? In this paper
we use the technique of Vedenov et al.? to study
the influence of given background electron-plas-
ma-wave turbulence on the dispersion relation
of low-frequency drift waves.

While this work was nearing completion we
learned about the work of Krivorutsky et al.?
who have also investigated a similar problem.
Unfortunately, their paper does not seem to have
received the amount of attention it deserves—per-
haps because they use a rather cumbersome
mathematical procedure. Our results, based on
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a simpler and physically more transparent mod-
el,? agree with those of Krivorutsky et al.? in the
one case where they cover similar ground; in ad-
dition, our calculations contain many new fea-
tures not discussed by them.

Consider a low-8 inhomogeneous plasma (gradi-
ents along the x direction) immersed in a uni-
form magnetic field §0= (0,0, By). Let us assume
that there is stationary® high-frequency, short-
wavelength electron-plasma-wave turbulence in
this plasma and that its behavior is governed by
the wave-kinetic equation,?®

AN dw
‘gg’“" ¢V, N,— ﬁ'Vka=0, (1)

where N, =IFE 12/4nwk is the plasmon distribution
function, v awk/ak is the group velocity of plas-
ma waves, and other symbols have their usual
meanings. In Eq. (1), the space and time depen-
dences are slow compared to space-time varia-
tion of the microturbulence. Thus, if this slow
dependence is provided by a drift wave (2, §) in
the medium, we must require Q <w,, ¢<<k for
the validity of Eq. (1). The presence of a small
density perturbation #, due to a drift wave modi-
fies the plasmon distribution N,. This is evident
from the plasma-wave dispersion relation (for an
electron-cyclotron frequency w,, > w,,, the plas-
ma frequency),

w2 =(k2/R%) (w2 +R%0,7), (2)

which shows that dw,/8T ~ 3i§w,7,/n,; substitu-
tion into a linearized version of Eq. (1) then yields

.= __zﬁ_gq(aNk/ak) 3)
T2 g, Q- G-V,

Equation (3) shows that fluctuations in electron
density due to the drift wave directly induce cor-
responding fluctuations in the intensity of elec-
tron plasma waves,

The modified plasmon distribution reacts back
on the drift wave through the averaged pondero-
motive-force term {(V,. V)V,) in the low-frequency
electron equation of motion.? The parallel com-
ponent of the linearized electron equation of mo-
tion now takes the form

~ ~ . ~
Og__j‘_e_a_ria+ﬁw__e_2£_( Ng , (4)
mn, 82 m 9z 2m?> 3z W,

where in the last term we have used the definition
~ ~J
N.=E2|/41w,.

Electron inertia has been ignored because Q
< gq,v, for drift waves. We have also neglected
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electron collisions (normal or “anomalous”) to
exclude the conventional drift-dissipative insta-
bility. Equations (3) and (4) show that

Ro/ne=P/T )1~ (A/nT )™, (5)

where

W Q(BN/ak)sl:f o_liz3j|-1
Q-a-% d’k Nkkdk , (6)

and W=c[N,’w,d% is the energy density of the
plasma-wave turbulence, ¢ being a normaliza-
tion constant taking care of dimensions while go-
ing from 2, to [dk.

The plasma-wave turbulence leaves the ion dy-
namics unaltered. We can therefore follow the
conventional treatment of drift waves for subse-
quent analysis. For T;=0 and @ <w,_;, the ion-
cyclotron frequency, one can show®

Fii/no= (@ ,/2)(e@/T), ()

where w_ =(~-cq,T,/eByny)(dn,/dx) is the drift
frequency. The parallel motion of ions and the
corrections due to finite ion Larmor radius are
ignored. Using quasineutrality, Egs. (5) and (7)
yield the dispersion relation

Q=w [1-A/n,T,] (8)

Note that A is a complicated function of Q [Eq.
6)].

When ion temperature is finite (T,=7;=T) and
strong temperature gradients exist (d InT /d Inn
>1), one has to retain parallel motion of ions
and gets®
~€9 4, Vs
T 92 ECER R (9)

SLI

0

where w,*=-(g,c/eB,)(dT /dx), and v =(2T/M)*"?
is the speed of sound. Together with Eq. (15),
this yields the modified dispersion relation for
the drift-temperature-gradient instability, viz.,

= (e@/T) g fviwr (1 = A/n,T,). (10)

We begin our discussion of Egs. (8) and (10) by
considering one-dimensional turbulence of elec-
tron plasma waves propagating along the magnet-
ic field (¢ ,=k) and having an equilibrium spec-
trum

N, 1
N,;’:-——Sl—(zﬂ)l,erxp[ 2Az(k k)z]

Equation (6) may now be expressed in terms of
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the plasma dispersion function”

A _ W w2,822[1+&2$2-q-v02<g09—q-v0>],
n,T, 4n,T,v,°A q, Av, q, AQv,

(12)
where ¥, =V, lk:ko. Two limiting cases are of interest: (i) “Cold” limit. This corresponds to a sharply
peaked spectrum of plasma waves in % space. Choosing A<k, (Q -G-V,)/q-V, we get
A/ngT > a/(§ -G ¥,) (13a)
with
== g0 (W/4n,T ). (13b)

(ii) “Warm” limit. This corresponds to a broad spectrum of plasma waves satisfying A >k (Q - q-V,)/
q,vy and here

2 1/2 I _n.T\2
4 d( o )wz’ez[lu'@} koR=1 V°-<’ﬁ1“ d "°> ] (14)
n,T, \4n,T,/ A%, 2/ q, v,A q, VoA

In the “cold” limit, Eq. (8) takes the form

(Q=-wN(Q =T V) +aw*=0. (15)

This cubic equation can be readily solved by Cardan’s method. For large «, the solution is
Q= (aw *)”3[— 1, exp(z 3im)], |a|>4[q.7,- w*|3/27! w*l; (16)

an equation similar to (16) has also been derived by Krivorutsky et al.?> For small o,

R0, Gl ilew /0, -GT)12, lo|<dd,-o,l/2100,]. (n
Equations (16) and (17) show that even small magnitudes of plasma turbulence (W/n,T,~w /a0

<1) can drastically alter the properties of drift oscillations in a plasma. In particular, strong insta-

bilities (e.g., with a growth rate ~W'/3) can be driven by the turbulence. Our analysis gives a simple

physical picture for these instabilities. Under conditions of instability, the phase relationship between

7i, and N, is such that plasma waves accumulate in the troughs of the drift wave. This drives more

particles out of the trough through pondermotive forces and thus enhances the density perturbations.
The drift temperature-gradient instability is also strongly modified:

Q- q 02w, MO -GV )2 +aq,viw *=0. (18)
For large and small «, this gives the roots
Q= (agv2w ¥ 5[- 1, exp(+ Lin), exp(+ $i7)] (19)
and
Q=(qzzvssz*”3<—l+i‘[§) o 1 +4a +4a®+iV3(1 - a?)
2 6(q 02w, ¥ 1+2a+3a%+2a+a*
where

a=@-V) (g v2w,*¥) 113, (20)
o] T

Equation (19) shows a stronger dependence of the growth rate on the temperature gradient (compared
to case of no background turbulence). Since a is negative [Eq. (13b)], Eq. (20), for <1, shows a
possible suppression of the drift-temperature instability.

In the “warm” limit, Eq. (8) takes the form

ST\ W ow, w 2:’_ ' W w 2[ .<n)1’2ﬁ]
Q[1+z<2> o que_ELAs‘Uea =w, 1—4”07‘@_&132%2 1-4 ) ~ (- (21)
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This equation can be readily solved; for small W/n,T,, the solution is

Wt W T\'2 W w,? Wik, [Qp—-q-V
Q =~ 1_.._23___] - = be **0 R 0],
Re w*[ A% 4n,T, Tm < 2) dn,T, A q, VoA 22)

In this limit, resonance interaction between the modulations on the plasma waves (propagating at the
group velocity) and the parallel phase velocity of drift waves assumes an important role. Mode-cou-
pling effects thus lead to “emission” and “absorption” of drift waves by propagating plasma waves.
Instability may result if v,>Qz/q,.

To investigate the effect of two-dimensional plasma turbulence (in y-z plane), we choose a spectrum
NL=Nyb(k,—ko,)0(k,—k,,) for the “cold” limit. Equations (8) and (10) again take the form of Egs. (1 5)
and (18) with a new definition of a:

— w qu:qzvez G'EO _“_‘22.& - ( - M)]
a——4noTew,,kz o R +k03(k0yqz ko) a0, — 3ko, P . (23)

The basic new feature of two-dimensional turbulence is a modified group velocity. Equation (2) shows
that in the general case, the group velocity of plasma waves is controlled by two effects: (a) disper-
sion due to thermal corrections and (b) dispersion due to angular dependence. Equation (23) shows
that both contribute to the modified @. It is interesting to note that for k,,~ 0, we do not recover the
one-dimensional case discussed above; in fact o takes the form

a=(W/4n,T w2 (q,2/ky). (24)

It has not only a different sign from (13b) but also a much larger magnitude. Physically, the differ-
ence arises because a spectral choice N,b6(k,)6(k,— k,,) is different from the corresponding one-dimen-
sional case with no dependence on k,. It seems to us that for application to realistic finite systems in
the laboratory, Eq. (24) is better suited than the idealized one-dimensional limit (13b). The “warm”
limit for the two-dimensional case is considerably more complicated but produces similar effects.®

In conclusion we have shown that moderate amounts of short-wavelength electron-plasma-wave tur-
bulence can drastically alter the dispersion properties of drift waves. Compared to the work of Kri-
vorutsky et al.® our calculation has the following new features: (a) discussion of the “warm” limit,

Eq. (22); (b) discussion of drift temperature-gradient instability, Eqs. (18)-(20); (c) effect of two-di-
mensional anisotropic plasmon distributions, Egs. (23) and (24); and finally (d) a simpler mathemati-
cal and physical description. In many ways (both mathematically and physically) the plasma-wave pac-
kets behave like a “beam” of quasiparticles giving both “hydrodynamic”- and “kinetic”-type “beam” in-
stabilities. Taking this analogy further one can speculate that for “weak beams” this instability will
nonlinearly saturate when the “beam” is trapped by the growing waves, i.e., when a good fraction of
the plasma waves are trapped in the density fluctuations created by drift waves.

The particular choice of microturbulence and low-frequency waves in this Letter was governed by
reasons of simplicity. Future work should look at more realistic problems like the effects of Bune-
man, ion-plasma, or lower hybrid turbulence on trapped-particle modes, drift temperature modes,
etc. At the same time laboratory investigation of this interaction should be quite useful. In this con-
nection, the threshold amplitudes of turbulence for instability, etc., can be readily obtained by equat-
ing the growth rates derived above with the typical damping rate of drift waves.
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A drift instability due to electrons trapped in a series of shallow magnetic troughs has
been observed and compared to theoretical estimates. The instability, identified as Ka-
domtsev’s trapped-electron mode, is maximum at a density lower than estimated from the

theory.

Plasma confinement in magnetic configura-
tions periodic along the field lines divides parti-
cles into two classes: (i) circulating particles
which are not reflected at the field maxima, and
(ii) trapped particles localized in the field de-
pressions. If these depressions are shallow
enough, the rate at which the particles are scat-
tered from one class into the other can be higher
than the collision rate for large-angle collisions.
As was first pointed out by Kadomtsev and Po-
gutse,! this is a dissipative mechanism capable
of driving unstable the oscillations associated
with the plasma radial pressure gradient. This
instability is of special importance in the plasma
of present tokomak experiments. For the temper-
ature and density achieved, the particles trapped
in the field depression should locally excite un-
stable oscillations which will not be affected by
shear, unlike the long-wavelength drift waves
studied so far. In this Letter we report an at-
tempt to investigate the effect of the trapping-de-
trapping mechanism on drift oscillations.

In order to investigate this effect the 5-m-long
homogeneous magnetic field in the ODE device,
used previously to study collisionless drift waves,?
was modified to produce a spatial dependence of
the form B =Bl - ecos(2nz/L)] (¢~0.12, L=1.20
m, and B, <3750 G) with three field periods as
shown in Fig. 1. The plasma parameters re-
mained as described in Ref. 2, with constant
density along a flux tube (n, ~5x10°-2x10" cm 3,
T,~10 eV, 7,~2eV, Vn,/n,~VT/T~1.3 cm™,
and p, <107® Torr). Under the conditions report-
ed below, low-frequency instabilities arise, with
maximum amplitude in the density gradient at 7

~0.8 cm. These instabilities differ from the col-
lisionless drift waves that have been already in-
vestigated in homogeneous fields at the same
magnitude of B,.

In both cases for which the wave vectors have
been measured, the waves propagate azimuthally
in the electron drift direction and are standing
waves both radially and axially; the perturbed-
density axial distribution is recorded by a probe
moving parallel to the machine axis over 2.90 m.
For m=1 modes, the measurements show a new
wave structure (Fig. 2) with maxima localized in
the magnetic troughs. The data may suggest that
the “trapped” drift mode is a superposition of in-
dependent modes with parallel wavelengths of or-
der of the machine length and equal to the mirror
length, around the same frequency. However, by
correlating the moving probe to reference probes
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FIG. 1. Experimental setup.
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