
VOLUME 31,+UMBER 23 PHYSICAL REVIEW LETTERS 3 DECEMBER 1973

FeBrs, (FeC1,)i, and (FeC1,)i& . The magnetic
phase diagram of FeBr„which is shown in Fig.
2, exhibits changes in the slopes of the transition
lines at the tricritical point, as reported at 1 atm
by Fert et al. ' For the two structural phases of
FeCl„Fig. 3, a small change in slopes has been
observed, but it might be associated with inho-
mogeneities of the internal magnetic field.

FeCl, provides a system in which the tricriti-
cal point can be studied in two different environ-
ments without change in composition: In the low-
pressure phase (FeC1, )& the tricritical tempera-
ture decreases with applied pressure, but in the
high-pressure phase (FeC1,)» it increases as it
does in FeBr,.

The zero-pressure values for threshoM field,
Neel temperature, tricritical temperature, and
field and their pressure derivatives are given in
Table I. The 1-atm values are in satisfactory
agreement with those given by previous experi-
ments. '

The variations of exchange and anisotropy can
be deduced from these and other measurements
such as antiferromagnetic resonance' or perpen-
dicular susceptibility' under pressure. By relat-
ing these variations to the tricritical lines the
validity of theories of phase transitions can be
tested. Elastic and inelastic neutron scattering
studies in (FeC1,)„and compressibility measure-
ments are now in progress in order to use vol-
ume rather than pressure basis. A complete dis-
cussion of these results will be reported later.
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Recent neutron-diffraction experiments by Mook, Lynn, and Nicklow, as well as pre-
vious photoemission experiments by Pierce and Spicer, provide evidence that the Stoner
band splitting in nickel might not go to zero at T~, as it does in conventional band theory
of magnetism. It will be shown that the persistence of such splitting in the paramagnetic
regime can be explained quite naturally within the framework of the random-phase-ap-
proximation theory of spin fluctuations.

Recently Mook, Lynn, and Nicklow observed using inelastic neutron diffraction the rapid reduction
of the spin-wave scattering intensity on entering the stoner continuum in nickel as a function of tem-
perature. They found that the lower edge of the Stoner continuum did not appear to come down as they
raised the temperature through the Curie temperature, as Stoner-Hartree-Fock theory would predict.
This result lends support to the photoemission results of Pierce and Spicer, ' which also imply that no
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significant changes occur in the band structure of nickel as one passes through the Curie temperature.
We shall see that the occurrence of Stoner splitting in the paramagnetic regime is predicted quite nat-
urally by the random-phase-approximation (RPA) expression for the self-energy of the one-electron
Green's function.

Brinkman and Engelsberg write down the following expression for this self-energy for a ferromagnet
in the vicinity of the Curie temperature:

~,(d) = (tr'/X)gpf S(k', (v')[(v —(v' —e$-~')j '(f(d', (I)

where S(k, (v) is the Fourier transform of the spin-spin correlation function, ET is the exchange energy,
and e(k) is the one-electron energy of the system. ' This is what they call the "boson term. " They also
calculate a "fermion term" which they show to be insignificant in the calculation of Rel for a nonzero
Curie temperature. Since S(k', (v') is a sharply peaked function of (v' (i.e. , its width is much less than

the bandwidth), we may to a good approximation write

ReM(k, ~) = (V'/X)P P-„,(S$')/[~ —~(k —k')]),
where P signifies taking the principal part and where

S(k') = fd(d'S$', (v').

Brinkman and Engelsberg found that the resulting effective mass did not diverge at the Curie tempera-
ture, but it led to a divergent specific heat. %e shall see shortly that the situation is actually even

more interesting. Right at T, there are two solutions to

(Aj 6 $) Re M(k ()2) —0 (3)

for each%, implying that the Stoner splitting remains when T =T„evenfor weak exchange interaction.
To show this, let us calculate ReM(k, (v) for A(v =(d —c(k) very small in magnitude since if the RPA is

valid anywhere it should be va, lid for small U and hence small splitting. In this limit, Eq. (I) becomesg. . . S(k) n. . . S(k )
ReM(k, (v)-(2 )~U P (I k' =, +(2 )~

U P . d k'
g) (k k

—,),6 +vg k 77
2

where g, is a region at the middle of the Brillouin zone of radius k much smaller than the radius of
the Brillouin zone but much greater than Ib, (vI/Iv &I, where v 1, is V&e(k) and 0 is the unit cell volume.
The last term is independent of b, (v; the first term, assuming that S$ ) is the Ornstein-Zernike func-
tion (k2+k, ') ', where k, is the reciprocal of the correlation length, is proportional to

J
I 0'dk' &~+ Iv„ak'

n

Since k»b. (v/Iv, l, k can be taken to be infinite and the integral can be evaluated exactly by contour in-
tegration for small 0, to yield

g m [7( —2 are tan(k, v, /2 IL(v I)] s gn(h(d ).

Thus, for k, =0, Eq. (3) has two solutions, no matter how weak the interaction is. When we are away
from 7, and k, +0, the same two solutions will certainly exist if they both occur for values of he for
which 4~ » pk, v„, and thus there is a range of temperatures above T, for which there is band splitting
(see Fig. I). Since when k, becomes so large that 2k,v„ is much greater than 4(v, Eq. (6) becomes
zero, there will clearly exist a maximum value of k, (and hence a, temperature above T,) beyond which

only one solution to Eq. (3) will exist.
Using the full expression for the self-energy (i.e., including both "fermion" and "boson" terms), 3

the imaginary part is found to be given by
((0 —CO )

ImM(k, (v) =- (v/N) O' Q q, f d(v ' 5((v —(v ' —('. (k —k)) Iml(' (k ', (v ') tanh —+ coth =
(all energies measured from the Fermi energy).
If we use the standard RPA expression for X, we
obtain an integral which is very much like the
one done by Quinn and Ferrell' for the imaginary

! part of the self-energy of an electron gas, but
with the Coulomb interaction replaced by V. If
(I is taken to be very close to the Fermi surface
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FIG. 1. Plots of the dimensionless quantities J =M(k,
(u)/«(k) and Q = [«(k)/U]~pm/«(k)) versus Q =~a/«(k)
for parabolic bands for «(k)/U= 1. We approximate the
Brillouin zone boundary by cutting off our integrals
over k at a value k&. These plots are for 4=0.6k~.
Curve a, Ao ——k, /k&

——0.1; curve b, X~=0.01.

[as occurs if the splitting is very small and «(k)
lies near the Fermi surface] and if we use para-
bolic bands, ImM goes as (k/kF —I)', as shown

by Quinn and Ferrell. ' Thus, since ImM is small
there will be two distinct peaks in the spectral
density for «(k) near the Fermi level. '

Actually, as seen in Fig. 1, when k, 0, there
appear three solutions to Eq. (3) instead of two.
Although it is not difficult to understand two solu-
tions physically, it is more difficult to under-
stand three. Perhaps it is spurious and shows a
breakdown of perturbation theory. Perhaps it is
real and comes about because when the range of
the correlations is not infinite (i.e. , above T,),
there exist large regions where there is very
little fluctuating spin polarization and this leads
to the central resonance in the spectral density
[i.e. , the middle solution to Eq. (3)]. The middle

~

solution can be made to occur at 4m = 0 if we in-
clude the second (i.e., constant) term in Eq. (4)
in the definition of &~. This constant term is the
standard second-order perturbation-theory shift
of the one-electron energy «(k) of &co. The first
term in Eq. (4) represents the Stoner-like split-
ting. Let us call this the renormalized RPA or
RRPA.

If we do this, however, why not include the full
self-energy, including the first term in Eq. (4),
in the Green's function used to calculate the self-
energy, as this would appear to be a more con-
sistent approximation'P Such an approximation
was originally used by Izuyama in discussing the
wave vector dependence of the susceptibility near

If we do this and perform the resulting in-
tegrals for 7 =T, for small &co, we find that now
there is only one solution for weak interactions.
We can understand why this may be so if we con-
sider this same approximation in the hypothetical
limit in which S(k') is a & function (i.e., in real
spa, ce the correlation function is constant). We
then find that

M(k, v) =U'm, '/[4~ -M(k, e)],
where nz, is the square root of

When we solve for M, and using I find the spec-
tral density, we find that it is proportional to

for I&ul &20m, and 0 for ~~ & 2Umo. If as done
previously we do not include I in the Green's
function used to calculate the self-energy, we
then find that in the limit that S(k) becomes a 5

function in k, the Green's function for electrons
of either spin up or spin down becomes

6 (k, ~) = a [e —«(k) —Um, ] " + a [u& —«(k) +Um, ] '

This is the physically expected result when the
spin correlations are infinitely long range. The
reason for obtaining an unphysical result from
the supposedly better approximation of including
M in the G used to find M is that to be consistent,
it is apparently necessary to renormalize the
vertex function in addition to the Green's function,
which we have not done. '

If we try to apply the RRPA to paramagnetic
metals, which are nearly ferromagnetic (for
which the second-order perturbation expansion
of the mass operator is likely to be valid), we
find that in addition to the term given in Eq. (I),

there is the "fermion" term' considered by Do-
niach and Engelsberg' which leads to the effective
mass of an electron becoming large at 7.', . If
we include this term, expanding it to first order
in ~, and defining the Fermi energy to be zero,
we see from Eq. (6) and Ref. 8 that to find the
solutions to Eq. (3) for k on the Fermi surface,
near T, we must solve the equation

A, ln(k, /k, )&v =f (&~),

f (4~) =U'B l ——arctan —'2 k, l v„[
m 2 lb.co I
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f[ln(k/k, )] ', (14)

however, the band splitting will reduce to zero
when k, =0. Thus, for very nearly ferromagnetic
metals, we should see the appearance of a small
band splitting near T =0 which gets smaller as
we approach absolute zero temperature.

Although it is not entirely clear that second-
order mass-operator perturbation theory should
be correct for interactions not small compared
to the bandwidth (as occur in nickel), since as
seen earlier this approximation gives physically
correct results in the limit in which S(k) becomes
a 6 function, we expect that it may also be good
for correlations that fall off as 1/x as occurs at
T, in Ornstein-Zernike theory. (The result that
in the presence of correlations correct results
can often be obtained in perturbation theory in a,

regime where perturbation theory would not or-
dinarily be expected to be valid is the basis of
several theories of liquid meta, ls. ') Then, let us
use the free-electron gas model of nickel of
Lowde and Windsor" to find the band splitting.
We find by procedures illustrated by Fig. 1 that
in the RPA, the solutions to Eq. (3) occur at b.&u

= —1.02 m (k) and 0.5e(k), and in the RRPA they
occur at &co= —0.81m(k) and 0.75'(k) for k, =O.
If e(k) is taken to be the Fermi energy, this split-
ting is of the order of the zero-temperature Ston-
er splitting. Since as we go below T, we expect
the Stoner splitting not to decrease, the behavior
observed in Ref. I is consistent with the present
theory.

In order to make contact with the results of
Ref. 1, we will now try to calculate the suscepti-
bility. Using an approach like that used by Izu-
yama, ' we write

where U(q) is U plus an interatomic exchange in-
teraction Z(q) [J(q) is defined so that J(0) =0, i.e.,
J(0) is absorbed into U]. Here

Xo(q, l& „)= Q G (k + q, x(d~ + Ad „i )G (k, wd ~ i ).
L'

1420

where A, and B are constants. Since the initial
slope of f (cu) is given by

(13)

there clearly exists a sufficiently small value of
k, or a sufficiently large value of U (but still «
the bandwidth) so that the curves f («d) versus
«d and &(uA, ln(k, /k, ) versus b.~ intersect at the
three points mentioned earlier. Since the magni-
tude of the splitting is now proportional to

Using the RRPA result for M (at T, where k, = 0),
and hence G [i.e. , keeping only the first term in
Eq. (6)] for the ease of k, =0, we find that in the
weak-interaction limit (where RPA is expected to
be valid) there are no spin-wave poles in y for
sufficiently small q and ~. It has been assumed
that T is sufficiently small for ImM to be neglect-
ed. It is difficult to estimate how small q and &
must be, but this value of q appears to be con-
siderably greater than the observed minimum val-
ues of q where spin waves have been observed. '
In this regime X becomes like the RPA paramag-
netic state X, a.nd thus the correlation function
has Qrnstein-Zernike form for small" q as as-
sumed in the beginning of this Letter. For larg-
er q, there are spin-wave poles in X. [They
would be unstable modes had Z(q) not been in-
cluded but this is a well-known defect of the
single-band model"; had a multiband model been
used we would not need Z(q) for spin waves to be
well defined. ] Thus, the exact point of intersec-
tion with the continuum cannot be predicted in
this model because it is too crude [i.e., J'(q) is
not known], but the Stoner-like splitting in the
pa'ram@, gnetic phase does not vary too much with
increasing k, (and hence with increasing tempera-
ture), at least for the parameters appropriate to
nickel until the splitting disappears suddenly at a
sufficiently large value of k, . It is not expected
that the spin-wave poles will do more to the self-
energy above T, than below —i.e., cause small
broadening and shifts in the energies which should
not affect the conclusions about band splitting for
T &T.

Below T, straightforward application of RRPA
as done previously gives split bands of each spin

Lof the form e(k) —2o'Um —«, where b, reduces to
the first integral in Eq. (6) when m=0; m is the
magnetization, and o is the spin of the electron
considered. Thus, the paramagnetic spin-split
bands go smoothly into the ferromagnetic split
bands. Well below T„& should approach zero
as T approaches zero because the magnetic fluc-
tuations do.

It should be pointed out that this problem could
have been treated as that of an electron moving
in a Hartree-Fock effective field but with the ex-
change interaction a disordered potential. Using
the methods of Ref. 9, we obtain the "boson part"
(in the language of Ref. 3) of the self-energy to
lowest order in U.

If the Stoner splitting does not decrease as we
go above T„ the question is: "What causes mag-
netism in metals~" This will be the subject of
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future work.
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The ground-band level sequence in '
Hg has been identified to spin 10 and possibly to

Lifetimes for the 2, 4+, and 6+ states have been measured. The results imply the
onset of a permanent deformation above the 2+ level.

Isotope-shift measurements on the odd-mass
mercury isotopes reveal a sudden increa, se in
nuclear volume between A = 187 and A = 185."
This suggests that a dramatic shape change oc-
curs in the Hg isotopes which might be associated
either with a transition from a spherical to a de-
formed shape or from a spherical shape to a
spherical shell or bubble nucleus. '"' The ground-
state band of ' 6Hg has been identified by Proetel
et al. ' They found the first 2' state at 405 keV,
similar to the situation for the heavier Hg iso-
topes, and it seems unlikely that "'Hg is deformed
in its ground state. Hornshpj et al. ' have studied
the e decay of "'Pb and they conclude that the 2'
level in ' Hg must be higher tha, n 300 keV to ac-
count for the absence of fine structure in the n
spectrum.

In a series of experiments at the Chalk River
Mp tandem Van de Graaff we have identified the
ground-state band of ' Hg by applying the tech-
niques of in-beam y-ray spectroscopy to the re-

action '"Gd("S, 4n)"4Hg. The yield was found to
peak at about 156 MeV bombarding energy, about
as expected for the evaporation of four nucleons
from the compound nucleus. To corroborate the
mass assignment, recoils from the target were
stopped downstream and their y rays were count-
ed with a large-volume Ge(Li) detector shielded
from direct target radiation. Essentially all of
the y rays seen were from the known A = 184 de-
cay chain. ' The Z identification was made by
showing that the cascade y rays from the ground-
state band were in coincidence with Hg K x rays.
y-y coincidences were used to establish the coin-
cidence relationships in the cascade. The angular
distributions were those expected for a stretched
sequence of E2 transitions. The sequence of y-
ray energies is unusual in that both the 4'-2'
and 6'-4' transitions are lower in energy than
the 2'-0+. This ordering is clear from the rel-
ative intensities in Table I and is confirmed by
decay curves measured by the recoil-distance

I421


