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We compute exactly the four coefficients Co, and C&, in the expansion

P 'z=c„li-r, /rl '~'+c„ll —T,/TI '~'+o(z)

for the susceptibility of the rectangular two-dimensional Ising model.

In the absence of a magnetic field &„ the mag-
netic susceptibility of the two-dimensional ferro-
magnetic Ising model is unbounded at the critical
temperature T,. In this Letter we calculate ex-
actly all the divergent terms near T„both for
T&T, and for T &T,.

Nearly three decades ago, Onsager' gave his
celebrated treatment of the two-dimensional Is-
ing model when g =0, and in 1952 Yang2 calculat-
ed exactly the spontaneous magnetization. Mag-
netic susceptibility is thus the natural quantity to
study next.

Consider a rectangular Ising model with pair
energies E, and E,. We define the standard vari-
ables

z, =tanhPE„

z, = tanhpE„

a, =z, (1 —z,)(1+z,) ',

o, =z, '(1 —z,)(1+z,) ',
and the on-line correlation S~ = (vo cr s). For
large N and fixed temperature T, the asymptotic
behavior of S„has been studied systematically'
by using Wiener-Hopf sum equations.

For T IT„ this analysis has also been extend-
ed' to the off-line correlation (o«a„„). If we take
the explicit formulas (4.22) and (3.31) of Ref. 4,
we observe that "rotational symmetry" obtains

for T-T,. More precisely, if we define

g2 M2[z (1 z 2)] 2 ~ N2[z (1 z 2)] 2

then in the limit T —T„R- ~ such that Rl 1 —z,
-z, —z,z, )=f is fixed, we find that (o«0») of
both (4.22) and (3.31) is of the form, for any e
&0,

R '~4+ (t)+R '"E,(t)+O(ft '""),
where I', is I, times an elementary function of
z, and z, . The important point is the following:
If the Wiener-Hopf sum equations are iterated
more times, then to each order the form (1) still
holds. The question of convergence of this itera-
tion has been studied by Fisher and Hartwig. '
Thus, to the first two orders, the spin correla-
tion function depends only on R but not on N andI separately. It is therefore sufficient to con-
centrate on S~.

Although this consideration is sufficient to es-
tablish "rotational symmetry, " it is still neces-
sary to study in more detail the desired limit of
N- ~, T-T, such that NIT —T,t is fixed. For
this purpose we again define' x,(N) =Ss,/S„,
which can be determined by solving a set of si-
multaneous linear equations. In the limit of in-
terest, we can replace this set of linear equa-
tions by integral equations, after overcoming a
number of technical difficulties. In this way,
x,(N) and hence S~ can be determined to the de-
sired accuracy as

x, —max(1, a,) + ~inn, ~
lim f-Z'"(Z+1)'~' —~'~'lim [x(s, Z)/x(s)] lim [s'"x(s)]

+m'~' lim [s'"x(s, Z)]), (2)

where x(s) and x(s, Z) are, respectively, solutions of the equations

f ds'K, (js —s'()x(s') =e", f ds'K, (~s —s'~ )x(s', Z) =Z'"e z',

with I.=Nl inn, j, and K0 the modified Bessel function of the third kind.
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In 1962, Myers" studied integral equations of type (3) in connection with scattering of electromag-
netic waves from a strip. By his method we evaluate (2) explicitly as

x, =max(1, o.,) + linn, I(-', 8g '[(1 —g')' —(g')']+ —,'g'g '(1+ q)(1~ q)
' —(1~1)/2j, (4)

where 8 = l./2 and q(8) is a. Painleve' function of the third kind which satisfies the nonlinear differen-
tial equation

(8qq ') =8(q'-rj ')

together with the asymptotic conditions

q(8) 1-+-2~ 'SC, (28) —2~ 'Z, '(28)

for large 0, and

q(8) —8Q+8'2 '(SQ' —SQ'+4Q —1)

(6a)

for small 8, where Q(8) =In(8)+y —2ln2 and y is @uier's constant. Consider X')&~; then the identity

II x.(&) S~
r=u+~

yields the connection away from T, where for $& ~ we use (2.43) and (3.26) of Ref

& '"2 '"[(I+&~)/(I —o.',)]'"8'"[I+q(8)1exp[f, dxx ln(x)[1 —q'(x)]-g(8)j,
where g(8) is given by

g(8) = (2n) '»(8)b(n')" 8'[(1 —q')'- (n )']).

(6)

(10)

In order that S~' connect to the T =T, result, (5.3) of Ref. 3, we take the limit 8-0 and find that the
following identity must hold:

exp{f, x ln(x) [1 —rP(x)] dx} = e'"2""A ',

where A is Glaisher's constant, whose integral representation was first derived by Glaisher" in 1877

j. /2
g '2'"' = w'" exp- 1 —2f in[I'(1 +x) ]dx).

0

The behavior of the magnetic susceptibility near the critical temperature is as follows"".

P 'x=c„tl -T,/T I
'"+c„li-T,/T I »'+c„+0(1).

Using the "rotational symmetry" discussed above, we sum (oooo») to obtain exactly"

C„=Of 8d8 [I+q(8)]exp(fe [1 —q'(x)]xln(x)dx —g(8)f,
=Df 8 d8 ([I —q(8)] explfe [1 —q'(x)]x ln(x) dx —g(8))),

whe re D is given by

D = 2 '" (,. ..) '(,.-..)'"Q.IE,/(I - ..).E./(I -z„)]]'";

(12)

(13a)

(13b)

(14)

c„/c„=-c, /c, =-R,p„
with ~o being g1ven

R, = [E,'z„'(1+6z„'+z„')+E,'z„'(1+6z„'+z„')—SE,E,z, z, (z, ~z )~]

~LSzl. z2.(zl. +z2.)[E,(1 —z,.) +E,(1 —z,.)]] '.

» Fig 1~ we plot t"e dime»ioniess quantity R,(E, +E,) as a function of E,/E, . Note that this quan-
tity is —,

' at E,/E, = 0, and —v 2/1 6 at E,/E, = 1.
In order to compare with available series results we specialize to the case F., =F., =1, ~„=~„
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FIG. 1. The dimensionless quantity &0/(E&+E, ) as a
func'. ion of x=E&/E2. When x= 1, the value is —v2/16.
As x 0 the function behaves as 1/2+8/21'. The
curve crosses zero at - 0.1993.

=v 2-1, P, =-', ln(1+v'2), and numerically evalu-
ate (13)-(15) to obtain"

C, = 0.025 536 9V1 9. . . ,

C„=0.962 581 V32 2. . . ,

C, = —0.001 989 410 V. . . ,

C, + =O.OV4988153 8

These results give very good agreement with
Sykes et al."above T„C,+ = 0.962 59 + 3 x10 ',
C„=O.OV42, and with Quttmann" below I'„Cc
=0.0256+ 1x10 '.

Arguments can be made that the constants C,+

and C, are equal. The value of this constant de-
pends on correlation functions at short distances,
and hence cannot be computed by the present
method. Details will be published elsewhere.
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A special renormalization transformation is constructed for one-component spin sys-
tems on a two-dimensional triangular lattice. Fixed point, eigenvalues, and eigenvec-
tors are determined in various approximations, which converge well to known Ising data.

Most of the specific results of the renormaliza-
tion approach to critical phenomena have been ob-
tained by the & expansion for continuous spin sys-
tems interacting through a I andau-Ginzburg Ham-
iltonian (with s =4 —d, and d the dimensionality
of the spin lattice). This Letter concerns an ap-
plication of Wilson's' ideas to a general class of

discrete spin Hamiltonians which comes closer
to Kadanoff's' original derivation of the scaling
laws and which avoids the s expansion (which is
presumably asymptotic rather than convergent).

The method is best illustrated' for a two-dimen-
sional (2D) triangula. r lattice. In Fig. 1 the lat-
tice is divided into cells (triangles) having an odd


