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We compute exactly the four coefficients C, and Cy, in the expansion

B lx=Cp 1 =T /TI" 44 Cp 1 =T, /T3 410(1)

for the susceptibility of the rectangular two-dimensional Ising model.

In the absence of a magnetic field 4, the mag-
netic susceptibility of the two-dimensional ferro-
magnetic Ising model is unbounded at the critical
temperature T.. In this Letter we calculate ex-
actly all the divergent terms near T, both for
T>T,and for T<T..

Nearly three decades ago, Onsager! gave his
celebrated treatment of the two-dimensional Is-
ing model when A =0, and in 1952 Yang?® calculat-
ed exactly the spontaneous magnetization. Mag-
netic susceptibility is thus the natural quantity to
study next.

Consider a rectangular Ising model with pair
energies F, and E,. We define the standard vari-
ables

z, =tanhgE,,
z,=tanhgE,,

a,=z,(1-2,)1+z,) 7,

a,=z, Y(1-2,)(1+2z,)7",
and the on-line correlation S, ={0y,0,4)- FoOr
large N and fixed temperature T, the asymptotic
behavior of S, has been studied systematically®
by using Wiener-Hopf sum equations.

For T #T,, this analysis has also been extend-
ed* to the off-line correlation (0y,0,,). If we take
the explicit formulas (4.22) and (3.31) of Ref, 4,
we observe that “rotational symmetry” obtains

for T - T.. More precisely, if we define
R?=M2[z,(1 - 2,?)] 2+ N?[z,(1 - 2,%)] 2,

then in the limit T~ T, R - « such that RI1-2,
—-2,~2,2,/=t is fixed, we find that (0,0, of
both (4.22) and (3.31) is of the form, for any €
>0,

R™YAF () + R™5/*F,(t) + O(R /% *9), (1)

where F, is F, times an elementary function of
z, and z,. The important point is the following:
If the Wiener-Hopf sum equations are iterated
more times, then to each order the form (1) still
holds. The question of convergence of this itera-
tion has been studied by Fisher and Hartwig.®
Thus, to the first two orders, the spin correla-
tion function depends only on R but not on N and
M separately. It is therefore sufficient to con-
centrate on S,.

Although this consideration is sufficient to es-
tablish “rotational symmetry,” it is still neces-
sary to study in more detail the desired limit of
N -, T-T,such that NIT - T is fixed. For
this purpose we again define® x,(N) =S, .,/S,
which can be determined by solving a set of si-
multaneous linear equations. In the limit of in-
terest, we can replace this set of linear equa-
tions by integral equations, after overcoming a
number of technical difficulties. In this way,
x,(N) and hence S, can be determined to the de-
sired accuracy as

xo~max(1, @,) + [Ina,| lim {- Z}3(Z +1)*/2 = 73”2 1im [%(s, Z) /%(s) ] lim [s'/*%(s)]

Z >

s—>L

s> 0

+732 lim [s'%% (s, 2)]}, (2)

s> 0

where ¥(s) and X(s, Z) are, respectively, solutions of the equations®
L - L _ .
fo ds’Ky(ls = s’ )X(s’) =€, L ds'Ky(|s = s'|)x(s’, Z) =2 %" %3, (3)
with L =Nllna,l, and K, the modified Bessel function of the third kind.
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In 1962, Myers”'® studied integral equations of type (3) in connection with scattering of electromag-
netic waves from a strip. By his method we evaluate (2) explicitly as

xo=max(l, a,) + [Ina, {369 72[(1 - 1?2 = ()] + tn'p *Axn)A £ )t - 1x1)/2}, (4)

where §=L/2 and 7(0) is a Painlevé® function of the third kind which satisfies the nonlinear differen-
tial equation

(6n'n™)' =6(n*-n"?) (5)
together with the asymptotic conditions

7(8) ~ -1+ 21 1K, (20) — 2 2K *(26) (6a)
for large 6, and

n(8) ~ 69 +65277(8Q° - 82 +4Q - 1) (6b)
for small 6, where Q(0)=1n(6) +y — 21n2 and y is Euler’s constant. Consider N’>>N; then the identity

SN=[ ﬁ xo(r)] Sy’ (7

r=N+1 -

yields the connection away from 7',, where for S, we use (2.43) and (3.25) of Ref, 3 to obtain

Sy*~N"42712[(1 +)) /(1 - ;)] *6M4[1 £ n(6)] eXp{fowdxx In(x)[1 - n?(x)] - g(O)}, (8)
where g(f) is given by

2(6) = (2n) (6o (n?)’ +62[(1 - 1) - (n")?1}. 9)

In order that S,* connect to the T =T, result, (5.3) of Ref. 3, we take the limit # -~ 0 and find that the
following identity must hold:

exp{fowx In(x)[1 - 72(x)] dx}=e1/427/124 73, (10)

where A is Glaisher’s constant, whose integral representation was first derived by Glaisher'® in 1877
as

AT32712 = q1/2 exp{—l—Zfouzln[I‘(l +x)]dx}. (11)
The behavior of the magnetic susceptibility near the critical temperature is as follows!!*!2:

B7x=Coull =T /T4 CL =T /T |7+ Cpp + OL). (12)
Using the “rotational symmetry” discussed above, we sum {0,,0,,, to obtain exactly'?

Cos=D [ 00 [1+n(6)lexp{fy [1 - () Ix In(x) dx - g(0)}, (132)

Co-=DJf "0an (11 = n(6) Jexp{fy [1 - 17(c)Ix InGx) dx = g(0)}), (13b)
where D is given by

D=2"21(z,,2,,) Mz, +2,) Y YBAE, /(1 - 2,) +E, /(1 =2, )]} 7/ (14)
and

Ci+/Cor == C,./Co.==R,B,, (15)

with R, being given by
Ry = [Elzzzcz(l +62,.°+2,.%) +Ey%z, (1 +62,2+2,.") = 8E \E,2,,2,, (210425, 2]
X{gzwzzc(zm"“zu [El(l =2, ) +E,(1-2,, ]}-1- (16)
In Fig. 1, we plot the dimensionless quantity R (E, +E,) * as a function of E,/E,. Note that this quan-

tity is 4 at £,/E,=0, and -V2/16 at E,/E,=1.
In order to compare with available series results we specialize to the case E, =E,=1, z,,=2,,
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FIG. 1. The dimensionless quantity Ry/(E;+E,) as a
function of x=E,/E,, When x=1, the value is — v2/16.
As x— 0 the function behaves as 1/2+3/21nx. The
curve crosses zero at ~ 0,1993,

=V2-1, B,=%In(1 +V2), and numerically evalu-
ate (13)-(15) to obtain'*

C,.=0.0255369719. . .,
Cos=0.96258117322. . .,
C,.=-0.0019894107. . .,
C,+=0.0749881538. .. .

These results give very good agreement with
Sykes et al.'® above T,, C,,=0.96259+3x107%,
C,,=0.0742, and with Guttmann'® below 7', C,.
=0.0256+1x10 7%,

Arguments can be made that the constants C,,
and C,. are equal. The value of this constant de-~
pends on correlation functions at short distances,
and hence cannot be computed by the present
method. Details will be published elsewhere.

The authors express their gratitude to Profes-

sor C. N, Yang, Professor J. M. Myers, Profes-
sor A. Toomre, and Professor C. A, Tracy for
many stimulating discussions.

*Work supported ia part by National Science Founda-
tion Grant No. P29463,

TWork supported in part by National Science Founda-
tion Grant No, H037758,

1. Onsager, Phys. Rev. 65, 117 (1944),

®C, N. Yang, Phys. Rev. 85, 808 (1952),

5T, T. Wu, Phys. Rev. 149, 380 (1966); B. M, McCoy
and T. T. Wu, The Two-Dimensional Ising Model (Har-
vard Univ, Press, Cambridge, Mass,, 1973), Chap. XI.

‘H. Cheng and T. T, Wu, Phys. Rev. 164, 719 (1967),

M., Fisher and R. Hartwig, Arch, Ration. Mech. Anal.
32, 190 (1969).

5’I‘hroughout this paper the upper and lower signs re-
fer to the cases T >T, and T <7, respectively.

'J. M. Myers, Ph. D, thesis, Harvard University,
1962 (unpublished).

8J. M. Myers, J. Math, Phys. (N.Y.) 6, 1839 (1965).

M. Painlevé, Acta Math, 25, 1 (1902); E. L. Ince,
Ovdinary Diffevential Equations (Dover, New York,
1927), Chap, XIV.

0w, L. Glaisher, Messenger Math. 7, 43 (1877).

!¢, Domb and M. F, Sykes, Proc. Roy. Soc., Ser, A
240, 214 (1957).

M. E. Fisher, Physica (Utrecht) 25, 521 (1959), and
28, 172 (1962).

The subscript ¢ means, of course, the value at 7.

YThe numerical evaluation of C,- was first carried
out by C. Tracy, Ph. D, thesis, University of New York
at Stony Brook, 1973 (unpublished).

15M, F. Sykes et al., J. Phys. A: Proc. Phys. Soc.,
London 5, 624 (1972).

164, J. Guttmann, private communication.

Wilson Theory for Spin Systems on a Triangular Lattice

Th. Niemeijer and J. M. J. van Leeuwen
Laboratovium voor Technische Natuuvkunde, Delft, The Nethevlands

(Received 21 September 1973)

A special renormalization transformation is constructed for one-component spin sys-
tems on a two-dimensional triangular lattice. Fixed point, eigenvalues, and eigenvec-
tors are determined in various approximations, which converge well to known Ising data.

Most of the specific results of the renormaliza-
tion approach to critical phenomena have been ob-
tained by the € expansion for continuous spin sys-
tems interacting through a Landau-Ginzburg Ham-
iltonian' (with € =4 —d, and d the dimensionality
of the spin lattice). This Letter concerns an ap-
plication of Wilson’s? ideas to a general class of

discrete spin Hamiltonians which comes closer

to Kadanoff’s* original derivation of the scaling

laws and which avoids the € expansion (which is

presumably asymptotic rather than convergent).
The method is best illustrated® for a two-dimen-

sional (2D) triangular lattice, In Fig. 1 the lat-

tice is divided into cells (triangles) having an odd
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