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If in fact the assertion of Kenkre and Dresden (Refs.

22, 23) were correct, it would have been of paramount
importance in the theory of electrical conductivity in
solids, since it would have bypassed the often difficult
task of solving the integral transport equation figuring
in all earlier theories. They also emphasized that
their formal expression for 0.(0), equivalent to our
Eq. (10), can be used without invoking the technique
of the "~ t limit" of van Hove, in contrast to other for-
mal expressions (Ref. 2) for the conductivity which
necessitate the use of the "~'t limit" technique. As
our discussion shows, this claim is wrong.

L. van Hove, Physica (Utrecht) 21, 517 (1955).
The details of this proof will be reported in a sep-

arate publication.
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We present a method of calculating the band structure of layer compounds that com-
bines the transmission and reflection matrices from individual atomic layers. The com-
puting time increases linearly with the number P of layers in the repeat unit, compared
with P3 for other methods, thus rendering the method suitable for layer compounds with
complicated stacking sequences. Results for MoS2 are described.

The method presented here is based on the lay-
er-scattering method originally developed for
low-energy electron diffraction. ' ~ We believe
that it is particularly well suited for the calcula-
tion of the band structure of the layer compounds
such as the transition-metal dichalcogenides.
The latter compounds have recently attracted
much experimental interest. '

The usual methods of calculating band structure
[augmented plane wave (APW), Korringa-Kohn-
Rostoker, etc. ] when applied to crystals, espe-
cially anisotropie crystals having so many atoms
per unit cell, are cumbersome to the point that
calculations are possible only for points of high
symmetry. Calculations made so far have main-
ly employed semiempirieal methods because of
these difficulties, though recently Mattheiss' has

made first-principles calculations using the APW
method at symmetry points, with a tight-binding
scheme interpolating between the points.

All the various structures of the layered transi-
tion-metal dichalcogenides can be broken down

into layers containing only one type of atom. The
complexity is generated by the stacking together
of layers. It is the large unit-cell dimension nor-
mal to the layers that necessitates the large num-
ber of Fourier components required to describe
the wave functions. Parallel to the layers only a
modest number of Fourier components are re-
quired. It would seem logical to employ a two-
dimensional Fourier expansion of the wave func-
tion parallel to the layers, the z variation being
represented in real space.

The treatment given here follows Pendry. s The
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crystal is described as an array of atomic layers
stacked on top of one another, each with two-di-
mensional translational symmetry parallel to the
x-y plane. We shall imagine that between conse-
cutive layers there is a region of constant poten-
tial Vo (which can, if desired, be shrunk to zero

width).
For a given energy E and component of the

Bloch wave vector k parallel to the planes, the
Bloch waves are expanded in a Fourier series of
the two-dimensional reciprocal lattice of the ba-
sic layers. Between the ith and (i+ l)th planes
the Bloch wave g, is given by EII. (13) of Pendry~:

g, =Q-[u,.-'exp(iK, ' r)+u, e.xp(iK, ~ r)],
where

d, typically m=9.
ture in the stacking
and calculating the
e determined re-
problem even for
the power of the

g he Q's. Kambe"
has given a method of calculating reflection and
transmission matrices for an isolated layer of
atoms. Layers can be built up into more corn-
plex units by adding one layer at a time, multi-
plying by its reflection and transmission matri-
ces. Each successive addition of a layer involves
the same amount of computation and so the time
to combine p atomic layers into the repeat unit
of the crystal is proportional to p. In an APW
caleuIation the number of three-dimensional Fou-
rier components is proportional to p, but the ma-
chine time required to diagonalize the Hamilto-
nian matrix is proportional to p . Similarly,
times for Korringa-Kohn-Rostoker methods
scale as p'. Hence, layer methods are increas-
ingly useful as the complexity of the crystal in-
creases.

With the same formalism we can establish the
two-dimensional band structure of an isolat:ed
atomic layer or isolated triple-layer "sandwich"
such as S-Mo-S. The relevant Q matrices can
be used to determine how an incident wave is re-
flected and transmitted by such a layer. If the
latter has a bound state for this wave we shall
have a pole of the reflection and transmission
matrices. A bound state of the isolated sandwich
is what is meant by the two-dimensional band
structure. The poles of, e. g. ,

det[Q (Ek~I)l

g,.+~= exp(ik, d, + ikII Zg)g, ,

where d is the displacement of each identical set
of p layers relative to the previous one. Or, in

terms of the plane-wave amplitudes,

u, ,~'=exp(ik Z)u, ',
u, ,~ =exp(ik K)u, ,

where u denotes the whole column matrix u,.&.

If the transmission and reflection coefficients
Q of the repeat unit consisting of p layers are
known,

+ I + II
ui+I, =Q ui +Q u (6)

(I )u,. =q"'u, '+q' u,„,
these equations lead' " to an eigenvalue problem
for the Bloeh waves and Bloeh wave vector k:

qI q I I u ~

(qiv)~QIIIQ I (QIV)-I(f qIIIqII)

u
e ik+~

where the notation of Pendry~ has been followed.
This equation is used to find 4, having fixed E and

k](.
The dimensions of the matrix to be diagonalized

are 2n &&2n, where n is the number of two-dimen-
(9)

thus give the two-dimensional band structure.

K,'=(k„+g„, k, +g„, +[E —V, —(k, +g„)' —(k, +g,)']'"), E —V, &(k„+g,)'+ (k„+g,)',

=(k„+g„, k, +g„+i[(k„+g,)'+ (k„+g,)' —E+ V,l"'), E —V, &(k,+g,)'+ (k, +g,)',

and k„,k, are the x, y components of k. Atomic
units are used, with energies in rydbergs. sional Fourier components use

We have made use of the translational symme- Increasing complexity of struc
try of the layers to require that our wave func- of layers leaves n unaffected,
tion has B)och-wave properties parallel to the band structure once the Q's ar
layers, with wave vector k. If the layers are mains a modest computational
stacked together repeating every p layers, we layer compounds. Herein lies
also place the requirement of a Bloch condition method.
in the z direction: The crux lies in ealculatin t
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This means that we are able to calculate the two-
dimensional band structure as a subsidiary re-
sult when calculating the three-dimensional case.

Calculations begin with the Kambe" treatment
of scattering by individual layers of atoms. This
requires the phase shifts of atoms, and we must
now describe how we obtained these. We used the
conventional assumptions' that the charge density
in the solid is to be had by allowing the charge of
spherically summetrical atoms to overlap; Her-
man-Skillman' atomic wave functions were used
to find this charge.

Only the spherically symmetric component of
the charge density about any given atom was con-
sidered; and the potential was constructed for an
electrostatic component, found by solving Pois-
son's equation, and an exchange and correlation'
component, for which we adopted the Xe approx-
imation with a = 1:

(10)
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%e also tried using the recommended best atomic
values for n. e However, w'e found that this pro-
cedure gave band structures slightly less satis-
factory than with e= 1.

Muffin-tin spheres were drawn about the atoms.
Outside the spheres, but within the 8-Mo-S sand-
wiches, the potential was approximated as a
constant equal to an average potential in this re-
gion. Between sandwiches, where the lower
charge densit;y can be expected to give a less at-
tractive potential, another average was taken,
which allows the potential to be rather more real-
istic than the simplest muffin-tin approximation.

Convergence of the calculation was investigated,
and required phase shifts up to l =2, while in the
Fourier expansion, thirteen terms were used
within a layer and seven between layers (the
large interlayer spacing reduces the importance
of the strongly decaying higher Fourier compo-
nents). Computation times on an IBM 370/165
were 0.4 sec to evaluate all scattering by indi-
vidual layers, 1.5 sec to assemble the layers
into sandwiches and the two sandwiches into a
repeat unit, and a further 0.2 sec to solve the
eigenvalue equation (8).

We have calculated the three-dimensional band
structure of 2H and 3R MoS2 and the two-dimen-
sional band structure of MoS, . The calculated
bands along I'KM' in the Brillouin zone" a,re
shown in Fig. 1 for the 2H structure. The other
band structures mentioned and more extensive
results for the 2H structure will appear in a, full-
er paper, together with comparison with exper-
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FIG. l. Energy bands for M Mo82 relative to the
vacQU?Tl level,

iment and other calculations. Suffice it to say
here that broadly the ordering and nature of the
bands agrees with the model of Wilson and Yof-
fe,"earlier semiempirical tight-binding calcu-
lations, "'"and recent first-principles calcula-
tions, "'3 while differing in the magnitudes of
some band gaps.

As regards the indirect gap between valence
and conduction bands, our value of ~ eV agrees
with Yoffe's' 0.3 eV from transport properties,
while Mattheiss's' calculated 1 eV agrees better
with the indication of about 1.2 eV from photo-
emission. ' Which experimental value is correct
for the bulk is at present uncertain, but in photo-
emission the relevant electrons probably origi-
nate in the first sandwich layer and thus reflect
perhaps more the two-dimensional band structure
which has a larger gap. " In any case, there are
uncertainties about how the exchange and corre-
lation hole changes between the full valence bands
and empty conduction bands. " More significant9
therefore, may be our finding that the so-called
d(z ) band just below the Fermi level (from —0.72
to —0.85 Ry in Fig. 1) overlaps the lower P va-



VOr. UME 31,NUMBER 23 PHYSICWI. RZVIZW r. sTTZRS 3 DECEMBER 197$

TABLE I. Features in the optical spectrum.

Feature
Observed (Ref. 17)

(eV)
Calculated

(eV) Levels

A B
C
D

p
R

2.01
2.76
3.17
3.81
4.59
4.86

1.9
3.0
3.5
3.6
4.6
4.9

I"
4

I'5+

K3 ~I
5

K4
I' + I'

6 5

M(+ M2

M2 M4

'Spin-orbit splitting.

*Now at Transport and Road Research Laboratory,

lence bands a little, in agreement with experi-
ment and Kasowski, whereas Mattheisse finds
a gap. The differences between the three calcu-
lations presumably arise from some difference
in the treatment of the interstitial potential, since
the setting up of the potential in other respects
was the same. In Table I we list the calculated
energy gap which we assign to various features
in the observed" optical spectrum. In particu-
lar, we agree with Mattheiss over the vexing
question of the A, B excitons in assigning them to
the d-d transition I', to I',+. All in all, the ac-
curacy is as can be expected from such calcula-
tions, and a fuller test of the theory awaits the
calculation of matrix elements and densities of
states.
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We consider phonon-electron interactions in highly doped III-V and II-VI semiconduct-
ing compounds, including nonparabolicity of the conduction band and the spin-orbit inter-
action. Absorption coefficients are calculated for monochromatic phonons produced by
superconducting Sn and Al tunnel junctions, and we predict the possibility of observing
directly an interaction of conduction electrons with slow and fast transverse modes, and
phonon- induced spin- flip transitions.

Special properties of conduction electrons in
small-gap semiconductors introduce new ele-
ments into their interaction with acoustic pho-
nons. The involved character of the conduction

band and a large spin-orbit energy give rise to
an interaction of electrons with transverse pho-
non modes and to spin-flip processes. The same
features affect the electron transport properties


