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A formula for the electrical resistivity expressed in terms of a projection operator is
derived and discussed. It is argued that the correct evaluation of the resistivity to the
lowest order in the strength of the scattering interaction on the basis of this formula re-
quires, as do other formal expressions, the summation of an infinite number of terms.
This re-establishes the standard theory of electrical conductivity, based on the integral
transport equation for the distribution function.

There exist a large number of theoretical meth-
ods' "for the evaluation of the electrical conduc-
tivity of solids. Although the techniques differ,
they all require" the solution of an integral equa-
tion, which in the lowest approximation for the
scattering and for a weak, homogeneous, and
static electric field is equivalent to the Boltz-
mann-Bloch transport equation, first proposed
by Bloch and Nordheim. "

We present below a different method for the
evaluation of the electrical conductivity, based
on an adaptation of the general theory of irre-
versible processes recently presented by Mori. "
By the use of a particular projection operator we
obtain an expression for the conductivity that is
different from the earlier ones in the following
important aspect: All indicated operations in it
are performed in the denominator. Thus, we ob-
tain a formal expression for the resistivity.

Although a similar method has been presented
earlier by Kendre and Dresden, "our expression
provides a very convenient basis for investigating
higher order terms and for summing certain sub-
sets of them. This advantage is very important,
since the application of the Kenkre and Dresden"
method by the same authors ' to the problem
of dc conductivity has led to unfortunate errors. "

We show how our thoery yields a formula for
the dc resistivity that is identical to the one ob-
tained through the solution of the integral trans-
port equation, "thus re-establishing the correct-
ness of an entire body "of theoretical investi-
gation. This is in contradiction to some recent
claims"'" to the contrary.

We consider a system of electrons driven by a
homogeneous electric field E(t) =Ee ' '+c.c. of
frequency co in a particular direction. The inter-
action Hamiltonian is —eE(Ae ' '+H. c.), where
A is the appropriate position operator. The
steady-state conductivity is then

o((u) = (- e'/m) tr[pp((u)],

where p is the operator for the component of the
momentum of the system in the direction of the
field, and p(&u) is the steady-state density opera
tor linear in E with the factor (-eE) removed
and exhibited in (1). (We have set the volume of
the system equal to unity. ) From the equation of
motion for the density operator we have, "for
p(&u) (we take I =1 throughout),

(&' —L)p(&) = I& fo(&)]=D.

Here I. is the Liouville operator corresponding
to the Hamiltonian 0 of the system in the absence
of the electric field, i.e., for any operator&

PD =D, P'D —= (1 —P)D = 0$ (5)

and thus P is a projection operator. We now in-
troduce in (2) the splitting p = Pp+P'p, and then
operate on it. with P and P', separately, to get
with the help of (5)

(e+ —PL)Pp —PLP'p =D,

(z+ —P'L) P'p —P'LPp = 0.

(6)

Solving (7) for P'p in terms of Pp and substituting
it in (6), we have

jv' —PL[1 + G'(~)P'L] tPp =D, (8)

f,(H) is the thermal equilibrium density operator,
and ~' = ~+is, where e is a positive infinitesi-
mal. In (1) the limit e -0' should be taken last.
An expression for the conductivity can now be ob-
tained by the introduction of a projection opera-
tor P, analogous to those used by Mori" in a dif-
ferent context. For any operator X, we define P
by the relation

PX =D tr( pX)/tr( pD) =Da ' tr(pX),

where D is defined in (2). This is possible pro-
vided a=tr(pD) c0. We note immediately that
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G'(v) = (&u+ —I., —P'L, )

= G, (cu) + G, (cu) P 'I, ,G, (u)) +. . . ,

since PL+ ~tr[(I.op)X] =0. In (13) we have in-
troduced the unperturbed propagator

G.(~) =(~'- L.) '. (14)

The operator D =[A, ,f,(H, +~)]=D,+D, +. . . can
be expanded in powers of A. in the standard way.
We note that for this system D, = [A,f,(iI,)] = (i/
m)f, '(Ho)p, where f, '(x) =Bf,(x)/ex, and therefore

where we have introduced the propagator

G'(~) = ((u' P-'L) '.
%e note that all terms on the left-hand side of
(8) are simple scalar multiples of D, and thus
from (1), (4), and (8) we find

cr(&u) = (- e'a'/m)

x'(au —tr(pL[l + G'(&u) P'L] D}] '. (10)

'7his can also be written in the equivalent form

o(~) = (- e'a'/m)(1/&u')

x[a —tr{pLG (~)D)]-', (l1)

since from the definition (9) of G'(~) we have 1
+ O'I"L = ~'0'.

Equations (10) and (ll) are formal expressions
for o(cu). They have the feature that all opera-
tors are carried out in the denominator and thus
provide, directly, expressions for the resistivity.

One might think that a. theory of the dc resis-
tivity in the lowest approximation for the scatter-
ing consists in evaluating the denominator in (10)
for hl = 0~ l.e.

~

Q(0) -=tr(pL[1+G (0)P L]D),

by keeping only terms of order ~', where ~ char-
acterizes the strength of the scattering interac-
tion V; i.e., we take g=II +V, where 0, is the
unperturbed energy of the electrons such that
[H„p]=0, while V is a momentum-independent
scattering potential totally responsible for the
dc resistivity. If we introduce the I,iouville oper-
ators L+ =- [H„X]and I.,X —= [V,X], we note that
the first term in (12) vanishes, because L,p =0
and [A, I,p]=0 for a momentum independent V.
Since now PLD ~tr(pLD) = 0, we have

Q( ) =tr[pL, G'( )LD].

The propagator G'(~) can be expanded in powers
of A. in the form

Q(O) =(2m) ' D,(S,)W„.(P, —P, .)', (18)

&us = 2" i l'sa i ~(&a - &a )~

h„denote the eigenvalues of H„and p~= (Alp Ik).
Finally, since a =tr(pD) =tg[p, A]f(H)) =-i&,
where N is the number of electrons, Eqs. (10)
and (16) yield the expression

,(0)-| ~fo'(Q&~a(P~- P')'
2Ã

7his is an explicit expression in terms of the ma-
trix elements of V and does not involve the solu-
tion of an integral equation. An identical expres-
sion is obtained in the same order of A., if expres-
sion (11) is used for v(0).

We wish now to point out that formula (18) is,
in fact, generally not the correct expression for
the dc resistivity to the lowest order in the scat-
tering. %e remark that Kenkre and Dresden"'"
have erroneously identified an expression equiva-
lent to {18)as the correct dc resistivity. "

The reason that (18) is not the correct expres-
sion for the dc resistivity is the fact that in the
expansion of Q(0) there a.re in general higher or-
der in A terms that diverge (in the final limit e
-0'). There are two groups of such divergent
terms. The first group arises from the very
choice of the projection operator I'. To see this
note that the expansion of Q(0) in powers of X is
generated by use of the expansion (13) of G'(~) in
powers of P'L, = (1 —P)I,, and of the expansion of
D in powers of A. . In any given order in A., the
operator P, which figures in such an expansion,
yields terms proportional to tr[pL„G, (0) ~ ~ L,
x G,(0)D,]. Now since L,D, =0, it follows that

G, (0)D, = (i~ —I,) 'D, = (1/ie)D„

where e-0', and thus these terms diverge. The
second group of divergent terms arises whenev-
er in the expansion of G'(0) according to {13),
G, (0) operates on the part X, of an operator X
that is diagonal in the k representation, since

[G,(0)X,]„, =(ie) 'X„a5 (20)

I.,D, =0. Thus, Q(&u =0) is given up to order A.
' by

Q(o) =—tr[pL|G0(0)L&D0) i

since the term I.,D, does not contribute to Q(0).
A straightforward evaluation of the trace in (15)
in the representation [k) that diagonalizes both

Ho and p gives
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It is important to note that for the off-diagonal
part X„„ofX, for k'+A,

[Go(0)X~]kk =(ie —b'k+8k. ) 'X„„ (21)

(~)kk' » kk' (22)

From (ll) we thus find" for the dc conductivity

g(0) —= (e'/m) tr[ p[aL, G, (0)L,] 'D Jf. (23)

It is evident that (23) gives the dc resistivity 1/
o(0) to order x'.

More explicitly, (23) can be written in terms
of the diagonal operator

f= —[b,L,G (0)L,] 'D—
in the usual form

v(0) =—(- e'/m)Qk pk fk.

(24)

From (24) f, is seen to be determined from the
integral equation

&'~kk (f. -f.) = -(~ 'D.) kk

f.'(&k)Pk/m, -

has no divergent terms, since in the summation
over the intermediate states in the thermodynam-
ic limit this becomes [-i'(hk S-k.) —(Sk- Sk.)k ]Xkk.
as e-O'. Thus the procedure of keeping only the
lowest order in A. terms in the expansion of Q(0)
is invalid.

In fact, we have shown that by summing the
terms of the form of any power of (A.'/ie) that ap-
pear in the expansion of the denominator in (ll)—a procedure equivalent to the "A't limit. " tech-
nique of Van Hove"—we get an expression for
the dc resistivity to order A' that is identical to
the well-known one obtained through the solution
of the integral transport equation and different
from (18). For concreteness we have considered
a system of independent electrons in a periodic
potential and a set of fixed impurities, within the
one-band approximation. Such a system satisfies
all the previous specifications and the A represen-
tation is then the set of one-band Bloch states ~ k)
(we ignore spin throughout).

In (11) we expand" G'(0) and D in powers of X

and sum all terms that are of the form (X'/ic)".
Higher order terms can also be summed, but

they give rise to corrections of the dc resistivity
of order A.

' and higher.
The identification and summation of the diver-

gent terms is facilitated considerably by the in-
troduction of the operator A that projects the
part of any operator X that is diagonal in the k

representation, i.e.,

T = —Q kp kf, '($ k) T($ k)
/x'm,

whereas according to the expression (18)

T-T = Xm/Q-„p„'f, '($,)~(S,) '.

(28)

(29)

The two expressions are clearly different in gen-
eral, even in this simple case. Only for com-
pletely degenerate statistics are these two ex-
pressions equal, since then T =i =T(SF), where
hF is the Fermi energy.

A more detailed discussion should, of course,
include the important role of the randomness of
the impurity distribution. We plan to discuss
this and other relevant questions in a different
publication. "

To conclude, we reiterate that the formal ex-
pressions (10) and (11) for the conductivity yield,
if handled correctly -which for the system under
consideration implies the use of the "A.'t limit"
technique or something equivalent to it—,an ex-
pression for the dc conductivity identical to the
one obtained through the use of the integral trans-
port equation.
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We present a method of calculating the band structure of layer compounds that com-
bines the transmission and reflection matrices from individual atomic layers. The com-
puting time increases linearly with the number P of layers in the repeat unit, compared
with P3 for other methods, thus rendering the method suitable for layer compounds with
complicated stacking sequences. Results for MoS2 are described.

The method presented here is based on the lay-
er-scattering method originally developed for
low-energy electron diffraction. ' ~ We believe
that it is particularly well suited for the calcula-
tion of the band structure of the layer compounds
such as the transition-metal dichalcogenides.
The latter compounds have recently attracted
much experimental interest. '

The usual methods of calculating band structure
[augmented plane wave (APW), Korringa-Kohn-
Rostoker, etc. ] when applied to crystals, espe-
cially anisotropie crystals having so many atoms
per unit cell, are cumbersome to the point that
calculations are possible only for points of high
symmetry. Calculations made so far have main-
ly employed semiempirieal methods because of
these difficulties, though recently Mattheiss' has

made first-principles calculations using the APW
method at symmetry points, with a tight-binding
scheme interpolating between the points.

All the various structures of the layered transi-
tion-metal dichalcogenides can be broken down

into layers containing only one type of atom. The
complexity is generated by the stacking together
of layers. It is the large unit-cell dimension nor-
mal to the layers that necessitates the large num-
ber of Fourier components required to describe
the wave functions. Parallel to the layers only a
modest number of Fourier components are re-
quired. It would seem logical to employ a two-
dimensional Fourier expansion of the wave func-
tion parallel to the layers, the z variation being
represented in real space.

The treatment given here follows Pendry. s The
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